Atrofia hipocampal na doença de Alzheimer: mecanismos e implicações

##plugins.themes.bootstrap3.article.main##

José Inácio Gelain Silveira Pires
Antônio Teixeira Severo
Caroline Laimer Davesac
Daniella da Silva Crispim
Eduarda Rodrigues Pagliarini
Lara Carolina Duarte Orça
Laura Meireles Ferreira
Monique Wesz Welter
Rafaela Cabeda
Gabriel Cabeda Spalding Alves

Resumo

Objetivo: Analisar os mecanismos e implicações da atrofia hipocampal na doença de Alzheimer. Revisão bibliográfica: A Doença de Alzheimer (DA) afeta milhões de pessoas, sendo a atrofia hipocampal um marcador importante dessa condição. Embora não seja exclusiva da DA, a redução do volume hipocampal ocorre mais rapidamente em pacientes com Alzheimer. A progressão da doença pode ser monitorada por exames de imagem, como ressonância magnética, e biomarcadores no líquido cerebrospinal. Fatores genéticos, também influenciam a taxa de atrofia. Tratamentos, como anticorpos anti-amiloide e inibidores da colinesterase, ajudam a retardar o declínio cognitivo, enquanto terapias como estimulação magnética transcraniana oferecem alternativas promissoras para intervenção precoce. Considerações finais: A identificação precoce e a prevenção são cruciais para desacelerar a progressão da atrofia e aprimorar a qualidade de vida dos pacientes, destacando a relevância de uma abordagem preventiva no tratamento da Doença de Alzheimer.

##plugins.themes.bootstrap3.article.details##

Como Citar
PiresJ. I. G. S., SeveroA. T., DavesacC. L., CrispimD. da S., PagliariniE. R., OrçaL. C. D., FerreiraL. M., WelterM. W., CabedaR., & AlvesG. C. S. (2025). Atrofia hipocampal na doença de Alzheimer: mecanismos e implicações. Revista Eletrônica Acervo Científico, 25, e19452. https://doi.org/10.25248/reac.e19452.2025
Seção
Artigos

Referências

1. CARRIÓN VG, et al. Reduced hippocampal activity in youth with posttraumatic stress symptoms: an FMRI study. Journal of Pediatric Psychology, 2010; 35(5): 559–569.

2. CHOU YH, et al. A systematic review and meta-analysis of rTMS effects on cognitive enhancement in mild cognitive impairment and Alzheimer’s disease. Neurobiology of Aging, 2020; 86: 1–10.

3. CHU T, et al. Altered structural covariance of hippocampal subregions in patients with Alzheimer’s disease. Behavioural Brain Research, 2021; 409: 113327.

4. FERREIRA D, et al. Biological subtypes of Alzheimer disease: A systematic review and meta-analysis: A systematic review and meta-analysis. Neurology, 2020; 94(10): 436–448.

5. GOEDERT M e SPILLANTINI MG. A Century of Alzheimer’s Disease. Science, 2006; 314: 777–781.

6. GUO X. Passive immunotherapy for Alzheimer’s disease. Ageing Research Reviews, 2023; 94: 102192.

7. JAHANSHAHI AR, et al. Atrophy asymmetry in hippocampal subfields in patients with Alzheimer’s disease and mild cognitive impairment. Experimental brain research, 2023; 241(2): 495–50.

8. JOHANNESSON M. Lecanemab demonstrates highly selective binding to Aβ protofibrils isolated from Alzheimer’s disease brains. Molecular and Cellular Neurosciences, 2023; 130: 103949.

9. JUNG YH, et al. Effectiveness of personalized hippocampal network-targeted stimulation in Alzheimer disease: a randomized clinical trial. JAMA Network Open, 2024; 7(5): 249220.

10. KADOKURA A, et al. Regional distribution of TDP-43 inclusions in Alzheimer disease (AD) brains: their relation to AD common pathology. Neuropathology, 2009; 29(5): 566–573.

11. LEUNER B e GOULD E. Structural plasticity and hippocampal function. Annual Review of Psychology, 2010; 61(1): 111–140.

12. MUFSON EJ, et al. Hippocampal plasticity during the progression of Alzheimer’s disease. Neuroscience, 2015; 309: 51–67.

13. NELSON PT, et al. Early hippocampal atrophy is an important signal for clinicians but not necessarily a harbinger of Alzheimer disease. Neurology, 2023; 101(24): 1087–1088.

14. NORDBERG A. Mechanisms behind the neuroprotective actions of cholinesterase inhibitors in Alzheimer disease. Alzheimer Disease and Associated Disorders, 2006; 20(2-1): 12-8.

15. PINI L, et al. Brain atrophy in Alzheimer’s Disease and aging. Ageing research reviews, 2016; 30: 25–48.

16. SELKOE DJ e HARDY J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine, 2016; 8(6): 595–608.

17. SHEPPARD O e COLEMAN M. Alzheimer’s disease: etiology, neuropathology and pathogenesis. In: HUANG X, ed. Alzheimer’s Disease: Drug Discovery. Brisbane: Exon Publications, 2020; 1–22.

18. SZABO K e HENNERICI MG. Structure and physiology of the animal and human hippocampus. Front Neurol Neurosci, 2014; 34: 6–17.

19. VAN DE POL LA, et al. Hippocampal atrophy on MRI in frontotemporal lobar degeneration and Alzheimer’s disease. Journal of neurology, neurosurgery, and psychiatry, 2066; 77(4): 439–442.

20. VAN DYCK CH, et al. Lecanemab in early Alzheimer’s disease. The New England Journal of medicine, 2023; 388(1): 9–21.

21. VAN PRAAG H e KEMPERMANN G, et al. Neural consequences of environmental enrichment. Nature Reviews Neuroscience, 2000; 1(3): 191–198.

22. WOODWARD M, et al. The relationship between hippocampal changes in healthy aging and Alzheimer’s disease: a systematic literature review. Frontiers in Aging Neuroscience, 2024; 16: 1390574.

23. XIA P, et al. Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. The Journal of Neuroscience, 2010; 30(33): 11246–11250.

24. XIAO Y e HU Y, et al. Atrophy of hippocampal subfields relates to memory decline during the pathological progression of Alzheimer’s disease. Alzheimer’s Disease Neuroimaging Initiative, 2023.

25. XU J, et al. Progression of hippocampal subfield atrophy and asymmetry in Alzheimer’s disease. The European Journal of Neuroscience, 2024; 60(8): 6091–6106.

26. YU J, et al. Verbal memory and hippocampal volume predict subsequent fornix microstructure in those at risk for Alzheimer’s disease. Brain Imaging and Behavior, 2020; 14(6): 2311–2322.

27. ZHAO C, et al. Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. The Journal of Neuroscience, 2006; 26(1): 3–11.