Efeitos do uso de probiótica na melhora da performance durante o exercício físico

##plugins.themes.bootstrap3.article.main##

Neidivânia Medeiros da Nobréga
Alanna Michely Batista de Morais

Resumo

Objetivo: Avaliar os efeitos dos probióticos na performance de indivíduos praticantes de exercício físico, com foco na força muscular. Métodos: A pesquisa foi conduzida por meio de uma revisão integrativa da literatura, abrangendo 11 estudos publicados entre 2010 e 2025. A revisão seguiu seis etapas metodológicas: formulação da questão de pesquisa, busca na literatura, coleta de dados, análise crítica dos estudos, análise dos resultados e apresentação dos achados. A questão norteadora foi: "O uso de probióticos promove benefícios na performance de pessoas que realizam exercício físico?". Foram analisados ensaios clínicos randomizados, com descritores como “Probiotics”, “Exercise” e “Muscle Strength” nas bases PubMed, BVS, EBSCOHost, ScienceDirect e CAPES. Resultados: A análise identificou 11 artigos, sendo a maioria publicada em periódicos Qualis A1 (45,45%). Taiwan foi o país com maior número de publicações (36,36%). Os ensaios clínicos randomizados dominaram a metodologia, com participantes tanto atletas quanto sedentários. Os resultados mostraram que o uso de probióticos, como Lactobacillus e Bacillus coagulans, está associado a melhorias na força muscular e no desempenho físico. Considerações finais: Probióticos, associados à prática regular de exercícios, proporcionam aumento da força muscular, resistência e potência explosiva, além de acelerar a recuperação pós-exercício, reduzindo marcadores inflamatórios relacionados ao dano muscular.

##plugins.themes.bootstrap3.article.details##

Como Citar
NobrégaN. M. da, & MoraisA. M. B. de. (2025). Efeitos do uso de probiótica na melhora da performance durante o exercício físico. Revista Eletrônica Acervo Científico, 25, e20571. https://doi.org/10.25248/reac.e20571.2025
Seção
Artigos

Referências

1. ADORIAN TJ, et al. Efeitos da bactéria probiótica Bacillus no desempenho do crescimento, atividade da enzima digestiva e parâmetros hematológicos do robalo asiático, Lates calcarifer (Bloch). Probióticos Proteínas Antimicrobianas, 2018; 11(1): 248–255.

2. BARDIN L. Análise de conteúdo. 70ed. Lisboa. Edições 70, 1977. 230 p. ISBN: 972-44-0898-1

3. BYCURA D, et al. Impact of different exercise modalities on the human gut microbiome. Sports, 2021;9:14.

4. CHENG YC, et al. Effects of heat-killed Lactiplantibacillus plantarum TWK10 on exercise performance, fatigue, and muscle growth in healthy male adults. Physiol Rep, 2023;11(19):e15835.

5. CLARKE SF, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 2014;63:1913–1920.

6. DE SOUSA MNA, et al. Trilhando o caminho do conhecimento: o método de revisão integrativa para análise e síntese da literatura científica. Observatorio de la economía latino-americana, 2023; 21(10): 18448-18483.

7. DZIK KP, et al. Single bout of exercise triggers the increase of vitamin D blood concentration in adolescent trained boys: a pilot study. Sci Rep, 2022;12(1):1–10.

8. FUSCO V, et al. Authenticity of probiotic foods and dietary supplements: A pivotal issue to address. Critical Reviews in Food Science and Nutrition, 2022; 62(25): 6854–6871.

9. GEPNER Y, et al. Combined effect of Bacillus coagulans GBI-30, 6086 and HMB supplementation on muscle integrity and cytokine response during intense military training. Journal of Applied Physiology, 2017; 123: 11–18.

10. GUO M, et al. Bacillus subtilis improves immunity and disease resistance in rabbits. Frontiers in Immunology, 2017; 8(354): 1-13.

11. HIGGINS J. Cochrane Handbook for Systematic Reviews of Interventions. 2nd ed. Chichester: Cochrane, 2019; 694 p.

12. HOFFMAN JR, et al. The Effect of 2 Weeks of Inactivated Probiotic Bacillus coagulans on Endocrine, Inflammatory, and Performance Responses During Self-Defense Training in Soldiers. Journal of Strength and Conditioning Research, 2019; 33: 2330–2337.

13. HOFFMAN JR, et al. The Effect of 2 Weeks of Inactivated Probiotic Bacillus coagulans on Endocrine, Inflammatory, and Performance Responses During Self-Defense Training in Soldiers. Journal of Strength and Conditioning Research, 2019; 33(9): 2330–2337.

14. HUANG WC, et al. Effect of Lactobacillus plantarum TWK10 on exercise physiological adaptation, performance, and body composition in healthy humans. Nutrients, 2019;11(11):2836.

15. IBRAHIM NS, et al. The effects of combined probiotic ingestion and circuit training on muscular strength and power and cytokine responses in young males. Applied Physiology, Nutrition, and Metabolism, 2018; 43(2): 180-186.

16. JÄGER R, et al. Probiotic Bacillus coagulans GBI-30, 6086 reduces exercise-induced muscle damage and increases recovery. PeerJ, 2016; 4: e2276.

17. JÄGER R, et al. Probiotic Streptococcus thermophilus FP4 and Bifidobacterium breve BR03 Supplementation Attenuates Performance and Range-of-Motion Decrements Following Muscle Damaging Exercise. Nutrients, 2016; 8(10): 642.

18. KOCSIS T, et al. Os probióticos têm efeitos metabólicos benéficos em pacientes com diabetes mellitus tipo 2: uma meta-análise de ensaios clínicos randomizados. Scientific Reports, 2020; 10(1): 11787.

19. LAGHI L, et al. Suplementação probiótica em cavalos trotadores treinados: efeito sobre dados de patologia clínica do sangue e metabolômica da urina avaliada em campo. J Appl Physiol, 2018;125:654–660.

20. LEE CC, et al. Different impacts of heat‐killed and viable Lactiplantibacillus plantarum TWK10 on exercise performance, fatigue, body composition, and gut microbiota in humans. Microorganisms, 2022;10(11):2181.

21. LEE K, et al. Lactobacillus plantarum HY7715 ameliorates sarcopenia by improving skeletal muscle mass and function in aged BALB/c mice. Int J Mol Sci, 2021;22(18):10023.

22. LEE MC, et al. Efficacy of Lactococcus lactis subsp. lactis LY-66 and Lactobacillus plantarum PL-02 in enhancing explosive strength and endurance: a randomized, double-blinded clinical trial. Nutrients, 2024;16(12):1921.

23. LEE MC, et al. Live and Heat-Killed Probiotic Lactobacillus paracasei PS23 Accelerated the Improvement and Recovery of Strength and Damage Biomarkers after Exercise-Induced Muscle Damage. Nutrients, 2022; 14(21): 4563.

24. LEE MH, et al. Consumption of dairy yogurt with the polysaccharide rhamnogalacturonan from the peel of the Korean citrus hallabong enhances immune function and attenuates the inflammatory response. Food & Function, 2016; 7: 2833–2839.

25. LI C, et al. Weizmannia coagulans BC99 improves strength performance by enhancing protein digestion and regulating skeletal muscle quality in college students of physical education major. Nutrients, 2024;16(23):3990.

26. NYANGALE EP, et al. Bacillus coagulans GBI-30, 6086 modulates Faecalibacterium prausnitzii in older men and women. Journal of Nutrition, 2015; 145: 1446–1452.

27. PLAZA-DIAZ J, et al. Mechanisms of Action of Probiotics. Advances in Nutrition, 2019; 10(1): 49-66.

28. PRZEWŁÓCKA K, et al. Effects of probiotics and vitamin D3 supplementation on sports performance markers in male mixed martial arts athletes: a randomized trial. Sports Med Open, 2023;9(1):31.

29. SCHEIMAN J, et al. Análise metaômica de atletas de elite identifica um micróbio que melhora o desempenho e funciona por meio do metabolismo do lactato. Nat Med, 2019;176(12):139–148.

30. SUPRUNOWICZ M, et al. Between Dysbiosis, Maternal Immune Activation and Autism: Is There a Common Pathway? Nutrients, 2024; 16(2): 549-586.

31. TARIK M, et al. The effect of Bacillus coagulans Unique IS-2 supplementation on plasma amino acid levels and muscle strength in resistance trained males consuming whey protein: a double-blind, placebo-controlled study. European Journal of Nutrition, 2022; 61: 2673–2685.

32. TOOHEY JC, et al. Effects of probiotic (Bacillus subtilis) supplementation during offseason resistance training in female Division I athletes. J Strength Cond Res, 2020;34(11):3173–3181.

33. TOWNSEND JR, et al. Isometric mid-thigh pull performance is associated with athletic performance and sprinting kinetics in Division I men and women's basketball players. J Strength Cond Res, 2019;33:2665–2673.

34. VECHETTI IJ Jr, et al. The role of extracellular vesicles in skeletal muscle and systematic adaptation to exercise. J Physiol, 2021;599:845–861.

35. YANG K, et al. The Improvement and Related Mechanism of Microecologics on the Sports Performance and Post-Exercise Recovery of Athletes: A Narrative Review. Nutrients, 2024; 16(11): 1602-1621.