Efectos neurotoxicos resultantes del tratamiento con células CAR-T en cánceres hematologicos

##plugins.themes.bootstrap3.article.main##

Renata de Andrada Santana
Cassiane Ferreira Pitombeira
Alessandra Alvarenga de Lima
Ana Luiza Monteiro de Souza
Tainah de Souza Santana
João Pedro de Resende Côrtes

Resumen

Objetivo: Definir el cuadro clínico de los eventos neurológicos asociados al uso de células CAR-T y determinar qué abordajes son eficaces para controlarlos, con el fin de garantizar una mayor seguridad y promover su uso como prototipo para futuros tratamientos de tumores sólidos y cerebrales. Métodos: Este artículo es una revisión integradora de un ensayo clínico controlado cuyos datos se recopilaron de las bases de datos virtuales Medline y PubMed de abril a mayo de 2024. Resultados: De los 35 artículos seleccionados, solo 3 no informaron de la presencia de efectos neurológicos por el uso de la terapia celular CAR-T. Además, la mayoría de los pacientes sometidos a terapia presentaron remisión completa, lo que pone de relieve la eficacia terapéutica en el caso de cánceres hematológicos graves y refractarios. Consideraciones finales: La literatura ofrece conclusiones divergentes, sin precisar si la administración de dosis más bajas o la actividad general del producto CAR-T pueden variar el nivel de toxicidad. Sin embargo, no cabe duda de que se han observado alteraciones sensoriales y déficits focales en muchos casos tras la infusión de células T modificadas, la mayoría de los cuales solo pueden tratarse sintomáticamente.

##plugins.themes.bootstrap3.article.details##

Cómo citar
SantanaR. de A., PitombeiraC. F., LimaA. A. de, SouzaA. L. M. de, SantanaT. de S., & CôrtesJ. P. de R. (2025). Efectos neurotoxicos resultantes del tratamiento con células CAR-T en cánceres hematologicos. Revista Eletrônica Acervo Médico, 25, e19293. https://doi.org/10.25248/reamed.e19293.2025
Sección
Revisão Bibliográfica

Citas

1. BELIN C, et al. Description of neurotoxicity in a series of patients treated with CAR T-cell therapy. Scientific Reports, 2020;10(1):18997.

2. OTTAVIANO G, et al. Phase 1 clinical trial of CRISPR-engineered CAR19universal T cells for treatment of children with refractory B cell leukemia. Science Translational Medicine, 2022;14(668).

3. BERDEJA JG, et al. Ciltacabtagene autoleucel, a B-cell maturation antigendirected chimeric antigen receptor T-cell therapy in patients with relapsed orrefractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study.The Lancet, 2021;398(10297):314–24.

4. YING Z, et al. Relmacabtagene autoleucel (relma-cel) CD19 CAR-T therapy for adults with heavily pretreated relapsed/refractory large B-cell lymphoma in China. Cancer Medicine, 2021;10(3):999–1011.

5. SAN-MIGUEL J, et al. Cilta-cel or Standard Care in Lenalidomide Refractory Multiple Myeloma. New England Journal of Medicine, 2023.

6. YING Z, et al. Long-term outcomes of relmacabtagene autoleucel in Chinese patients with relapsed/refractory large B-cell lymphoma: Updated results of the RELIANCE study. Cytotherapy, 2023;25(5):521–9.

7. RODRIGUEZ-OTRO P, et al. Ide-cel or Standard Regimens in Relapsed and Refractory Multiple Myeloma. New England Journal of Medicine, 2023;388(11):1002–14.

8. BENJAMIN R, et al. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet, 2020;396(10266):1885–94.

9. LEI W, et al. Safety and feasibility of anti-CD19 CAR T cells expressing inducible IL-7 and CCL19 in patients with relapsed or refractory large B-cell lymphoma. Cell Discovery, 2024;10(1):1–14.

10. LEE L, et al. Limited efficacy of APRIL CAR in patients with multiple myeloma indicate challenges in the use of natural ligands for CAR T-cell therapy. Journal for ImmunoTherapy of Cancer; 2023; 11(6): e006699–9.

11. SCORDO M, et al. Identifying an optimal fludarabine exposure for improved out-comes after axi-cel therapy for aggressive B-cell non-Hodgkin lymphoma. Blood Advances; 2023; 7(18): 5579–85.

12. LOPEDOTE P, Shadman M. Targeted Treatment of Relapsed or Refractory Follicular Lymphoma: Focus on the Therapeutic Potential of Mosunetuzumab. Cancer Management and Research; 2023; 15:257-264.

13. XU J, et al. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. Proc. Natl. Acad. Sci. U.S.A., 2019;116 (19) 9543-9551.

14. FRIGAULT M, et al. Dose fractionation of CAR-T cells. A systematic review of clinical outcomes; 2023; 42(1):11.

15. WUDHIKARN K, et al. Low toxicity and excellent outcomes in patients with DLBCL without residual lymphoma at the time of CD19 CAR T-cell therapy. Blood Advances; 2023; 7(13): 3192–8.

16. SCHROEDER BA, et al. Clinical trials for chimeric antigen receptor T-cell therapy: lessons learned and future directions. Current Opinion in Hematology, 2022; 29 (4): 225-232.

17. SUN Z, Liu M. Systematic review and meta-analysis of the association between bridging therapy and outcomes of chimeric antigen receptor T cell therapy in patients with large B cell lymphoma. Cytotherapy; 2022; 24(9): 940-953.

18. SHI X, et al. Anti-CD19 and anti-BCMA CAR T cell therapy followed by lenalidomide maintenance after autologous stem-cell transplantation for high-risk newly diagnosed multiple myeloma. American Journal of Hematology; 2022; 1; 97(5): 537–47.

19. WANG S, et al. Use of blinatumomab and CAR T-cell therapy in children with relapsed/refractory leukemia: A case series study. Frontiers in Pediatrics, 2023; 10.

20. RAM R, et al. Toxicity and efficacy of chimeric antigen receptor T-cell in patients with diffuse large B cell lymphoma above the age of 70 years compare to younger patients – a matched control multi-center cohort study. Haematologica, 2021.

21. RODDIE C,et al. Durable Responses and Low Toxicity After Fast Off-Rate CD19 Chimeric Antigen Receptor-T Therapy in Adults With Relapsed or Refractory B-Cell Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2021; 39(30):3352–63.

22. FOSTER MC, et al. Utility of a safety switch to abrogate CD19.CAR T-cell-associated neurotoxicity. Blood, 2021;137(23):3306–9.

23. WEINSTEIN B, et al. Efficacy and Safety of Innovative Experimental Chimeric Antigen Receptor (CAR) T-cells versus Axicabtageneciloleucel (Yescarta) for the Treatment of Relapsed/Refractory Large B-Cell Lymphoma (LBCL): Matching Adjusted Indirect Comparisons (MAICs) and Systematic Review. INNOVATIONS in pharmacy, 2021; 12(4):18.

24. ORTÍZ-MALDONADO V, et al. CART19-BE-01: A Multicenter Trial of ARI-0001 Cell Therapy in Patients with CD19+Relapsed/Refractory Malignancies. Molecular Therapy, 2021;29(2):636–44

25. YAN ZX, et al. Clinical Efficacy and Tumor Microenvironment Influence in a Dose-Escalation Study of Anti-CD19 Chimeric Antigen Receptor T Cells in Refractory B-Cell Non-Hodgkin’s Lymphoma. Clinical Cancer Research, 2019; 25(23):6995–7003.

26. WANG M, et al. Management of a patient with mantle cell lymphoma who developed severe neurotoxicity after chimeric antigen receptor T-cell therapy in ZUMA-2. Journal for ImmunoTherapy of Cancer, 2020;8(2):e001114.

27. SHAH NN, et al. Bispecific anti-CD20, anti-CD19 CAR T cells for relapsed B cell malignancies: a phase 1 dose escalation and expansion trial. Nature Medicine, 2020; 26(10):1569–75.

28. CHITADZ G, et al. Bispecific antibodies in acute lymphoblastic leukemia therapy. Expert review of hematology, 2020; 13(11):1211–33.

29. MAGNANI CF, et al. Sleeping Beauty-engineered CAR T cells achieve antileukemic activity without severe toxicities. The Journal of Clinical Investigation, 2020;130(11):6021–33.

30. KERSTEN MJ, et al. CD19-directed CAR T-cell therapy in B-cell NHL. Current Opinion in Oncology, 2020; 32(5):408–17.