Potential treatments in the management of covid-19

Potenciais tratamentos no manejo do covid-19

Tratamientos potenciales en la gestión de covid-19

ABSTRACT

Objective: To provide a tool to assist health professionals in the medical clinic regarding treatments still under study to combat COVID-19 and serve as a basis for future studies. Methods: For the development of this systematic review, research was carried out on the Embase, Pubmed databases and on the website clinicaltrials.gov, with the following inclusion criteria: selection of clinical trials carried out in adults, randomized or not, who addressed the discussion on the treatment or development of vaccines for COVID-19. Of the articles found, 22 studies were selected and those with a different methodological design were excluded. Results: The studies cover clinical trials that are divided into double or triple blind and present a low risk of bias. Among the tested interventions, Hydroxychloroquine and antivirals are the drugs that show the most promise in controlling the disease. The final results, however, are not yet available, as studies are ongoing. Final considerations: There is still no scientific evidence to recommend the use of any of the tested drugs, making it necessary to continue and maintain ongoing studies. Keywords: Covid-19, Therapy, Pandemics.

RESUMO

Objetivo: Fornecer uma ferramenta que auxilie os profissionais de saúde na clínica médica com relação aos tratamentos ainda em estudo para combate ao COVID-19 e servir como base para estudos futuros. Métodos: Para o desenvolvimento desta revisão sistemática, foram realizadas pesquisas nas bases de dados Embase, Pubmed e no site clinicaltrials.gov, com os seguintes critérios de inclusão: seleção de ensaios clínicos realizados em adultos, randomizados ou não, que abordaram a discussão sobre o tratamento ou desenvolvimento de vacinas para COVID-19. Dos artigos encontrados, foram selecionados 22 estudos e excluídos aqueles que apresentavam desenho metodológico diferente do desejado. Resultados: Os estudos abrangem ensaios clínicos que se dividem em duplo ou triplo cego e apresentam baixo risco de viés. Dentre as intervenções testadas, a Hidroxicloroquina e os antivirais são os medicamentos que se mostram mais promissores no controle da doença. Os resultados finais, no entanto, ainda não estão disponíveis, visto que os estudos estão em andamento. Considerações finais: Ainda não há comprovação científica que recomende o uso de nenhum dos medicamentos testados, se fazendo necessária a continuidade e manutenção dos estudos em andamento. Palavras-chave: Covid-19, Terapia, Pandemias.

1 Pontifícia Universidade Católica de Minas Gerais - Unidade Betim (PUC-MG). Betim-MG.
2 Santa Casa de Misericórdia de Belo Horizonte. Belo Horizonte – MG.
3 Universidade Vila Velha. Vila Velha - ES.
4 Centro Universitário de Belo Horizonte. Belo Horizonte – MG.
5 Centro Universitário de Brasília (UniCEUB). Brasília - BR.
6 Centro Universitário Faculdades Integradas Pitágoras (UNIFIPMoc). Montes Claros - MG.
RESUMEN

Objetivo: Proporcionar una herramienta para asistir a los profesionales de la salud en la clínica médica en relación contratamientos aún en estudio para combatir el COVID-19 y que sirvan de base para estudios futuros. Métodos: Para el desarrollo de esta revisión sistemática se realizó una investigación en las bases de datos Embase, Pubmed y en clinicaltrials.gov, con los siguientes criterios de inclusión: selección de ensayos clínicos realizado en adultos, aleatorizados o no, que abordaron la discusión sobre el tratamiento o desarrollo de vacunas para COVID-19. De los artículos encontrados, se seleccionaron 22 estudios y se excluyeron aquellos con un diseño metodológico diferente. Resultados: Estudios Ensayos clínicos que se dividen en doble o triple ciego y presentan riesgo de sesgo. Entre las intervenciones probadas, la hidroxicloroquina y los antivirales son los medicamentos que más prometedor sin control de enfermedades. Sin embargo, los resultados finales aún no están disponibles, ya que los estudios están en curso. Consideraciones finales: Aún no existe evidencia científica de que recomendar el uso de ninguno de los medicamentos probados, si se requiere continuidad y mantenimiento de estudios en curso.

Palabras clave: Covid-19, Terapia, Pandemias.

INTRODUCTION

In the last decade, viral epidemics have been registered in the world, causing many deaths and infections (CASCELA M, et al., 2020; YUAN J, et al., 2020). In December 2019, the first case of Corona Virus Disease (COVID-19) appeared in the province of Wuhan (China), a disease caused by the new SARS-CoV-2 coronavirus, which, when affecting humans, is capable of causing serious diseases in the tract respiratory and trigger symptoms similar to viral pneumonia, such as fever, cough and dyspnoea (SINGH K, et al., 2020; ZHAI P, et al., 2020).

Due to its high rate of transmissibility, SARS-CoV-2 quickly spread to several countries around the world and on March 11, 2020, COVID-19 was declared pandemic by the World Health Organization (WHO) (SALLARD E, et al., 2020; WHO, 2020). According to Johns Hopkins University, by the time this article was written the number of infected people in the world had already exceeded 10,000,000 with 504,843 deaths (JOHNS HOPKINS UNIVERSITY, 2020).

SARS-CoV-2, together with SARS-CoV and MERS-CoV, are part of the genus Betacoronavirus, of the Coronaviridae family (CASCELA M, et al., 2020). Between 2002 and 2003, SARS-CoV led to a viral outbreak that reached 12 countries in the world and caused several respiratory manifestations, similar to what happened in the Middle East in 2012 in the MERS-CoV infection (CASCELA M, et al., 2020; JIN Y, et al, 2020).

The mortality rate of the MERS-CoV reached 35% in the course of its epidemic, a number about 10x higher than the current pandemic (CASCELA M, et al., 2020; JIN Y, et al, 2020). However, due to its high number of infected people, SARS-CoV-2 has already caused more deaths than the two previous diseases combined (JIN Y, et al, 2020; DE WILDE AH, et al., 2017).

It is known that several studies on the pathophysiology of the disease are still necessary, but some authors suggest that the first step in elucidating the pathogenesis of the infection is the interaction of the virus protein S with the cell receptor ECA-2 (angiotensin-converting enzyme 2) (LENG Z, et al., 2020; TANG X, et al., 2020). After this interaction, the type II transmembrane serine protease enzyme (TMPRSS2) helps the virus to penetrate the cell wall.

The viral RNA is then transcribed and stimulates protein synthesis in the cell's cytoplasm, initiating viral replication that will trigger the release of new viruses (LENG Z, et al., 2020; JIN Y, et al, 2020). Unfortunately, the type II alveolar cells present in the lungs express the ECA-2 receptor and the TMPRSS2 enzyme in large quantities, which could justify the intense involvement of the respiratory system developed in the disease (LENG Z, et al., 2020; JIN Y, et al, 2020).
The selected clinical trials address the use of several drugs in the management of COVID-19. Among the therapies used, the use of chloroquine and hydroxychloroquine was evaluated; antivirals like INF, Lopinavir and Ritonavir; transplantation of mesenchymal cells and glucocorticoids. Although trials have not yet been completed, many expect promising results that would assist in the treatment and control of the current pandemic.

The present study aims to observe the existence of a clinical or therapeutic justification for the use of the various medications tested, the proof of its potential effectiveness and the exposure of the side effects of each treatment.

This review was motivated by the severity of the COVID-19 pandemic worldwide and the lack of definitive studies on the treatment of the disease. The results obtained can contribute to reduce the length of hospitalization of patients, decrease the severity of the disease and, consequently, have a positive effect on mortality rates from SARS-CoV-2. In addition, these researches could indirectly act in preventing a collapse in health systems worldwide, a scenario that is already a reality in several countries affected by the pandemic.

METHOD

For the development of this systematic review, research was carried out on April 21, 2020 in 2 databases (Embase, Pubmed) and on the website clinicaltrials.gov, following inclusion criteria: selection of clinical trials performed in adults, whether randomized or not, that were in phases I, II, III or IV and addressed the discussion about the treatment or development of vaccines for COVID-19. Studies that presented a methodological design other than a clinical trial, escaped the theme or addressed intervention groups of other age groups other than adults or the elderly (Table 2) were excluded.

In the Embase database, the keywords “COVID-19” and “therapy” were searched using the title, abstract, author keywords, separated by the Boolean operator “AND”. The “controlled clinical trial” and “randomized controlled trial” options were selected separated by “OR”. Of the 7 articles found, 2 were selected; one of them a protocol and 5 were excluded because they did not fit the theme.

In Pubmed, the same keywords were used with the Boolean operator ” AND “, but with the following filters: “clinical trial, phase I”, ” clinical trial, phase II “,” clinical trial, phase IV “,” clinical trial, phase III “,” controlled clinical trial “,” published in the last 5 years “,” clinical trial, humans “. 9 results were found, 9 were excluded because they did not fit the theme of the article or the methodological design of those included.

Finally, in the Clinical Trials the keyword used was “COVID-19” associated with “recruiting”, “active not recruiting”, “completed”, “interventional,” adult (18–64) ”,” older adult (65+) ”,” Accepts healthy volunteers “,” phase 1 “,” phase 2 “,” phase 3 ”,” phase 4 “. Of the 22 studies found, 2 were excluded for not adapting to the topic. The main objective of this systematic review is to provide a tool that can collaborate effectively in the favorable outcome of patients infected with SARS-CoV-2 (Table 1).

Table 1 – PICO.

<table>
<thead>
<tr>
<th>Population</th>
<th>Patients with COVID-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervention</td>
<td>Different therapeutic alternatives used in patients infected with SARS-Cov-2</td>
</tr>
<tr>
<td>Comparison</td>
<td>Patients treated with Hydroxychloroquine, Methylprednisolone or Lopinavir / Ritonavir x Patients who received vaccination</td>
</tr>
<tr>
<td>Outcome</td>
<td>Improvement in infected patients</td>
</tr>
</tbody>
</table>

Table 2 - Selection of studies.

RESULTS

As a result of this systematic review, 23 articles were found (Table 3) that fit the proposed theme and present a methodological design compatible with a randomized clinical trial. The selected studies are divided into double or triple blind and have criteria to be classified in trials with low risk of bias.

For the development of the studies, patients infected with SARS-Cov-2, health workers and possible close contacts of such patients were recruited. The clinical criteria used by Zhou Y, et al. (2020) to assess the inclusion of these patients were at least one among: Respiratory distress (≥30 times / min), Oxygen saturation ≤93% at rest, Arterial partial pressure of oxygen (PaO2) / fraction of inspiration O2 (FiO2) ≤ 300 mmHg (1 mmHg = 0.133 kPa), Respiratory failure requiring mechanical ventilation, septic shock development, critical organ failure requiring intensive care unit care, all of which are commonly found in patients with severe forms of the disease.

The therapeutic regimens proposed for the treatment of confirmed cases of COVID-19 in the clinical trials in question have Hydroxychloroquine as a central pillar, which has been used as a treatment, and sometimes as prevention for high-risk patients. Doses between 200 and 800mg were tested, in a period ranging from 7 days to 2 months, in order to produce improvement in the patient's clinical parameters and possibly develop a form of prophylaxis in the long term (ZHOU Y, et al.,2020; NCT04328285, 2020; NCT04329923, 2020; NCT04304053, 2020; NCT04331834, 2020; NCT04328961, 2020; NCT04341389, 2020; NCT04341441, 2020; NCT04344379, 2020; NCT04334928, 2020; NCT04353037, 2020; NCT04351724, 2020).

Among the other drugs tested, are: Azithromycin 250mg, Tenofovir Fopratoate Deoproxil 245mg, Emtricitabine 200mg, Lopinavir / Ritonavir 200 / 50mg, Methylprednisolone 1-2mg / kg / day, Folic Acid and Ascorbic Acid (QIN, et al., 2020; NCT04328285, 2020; NCT04329923, 2020; NCT04304053, 2020; NCT04331834, 2020; NCT04328961, 2020; NCT04341389, 2020; NCT04341441, 2020; NCT04344379, 2020; NCT04334928, 2020; NCT04353037, 2020; NCT04351724, 2020).
In the context of prophylaxis against future cases, in addition to the use of hydroxychloroquine, some clinical trials propose tests that evaluate the efficacy, safety and immunogenicity of vaccines that have mRNA-1273, BCG (Bacillus Calmette and Guérin) or the adenovirus vector in their composition type 5.

The first one, has viral mRNA encapsulated in lipid nanoparticles and is manufactured from the serum collected from chimpanzees infected with ChAdOx1, an adenovirus capable of infecting the animal and causing a disease similar to the common cold. BCG, on the other hand, is made with attenuated bacilli of Mycobacterium bovis and is used to prevent severe forms of tuberculosis. Finally, the Ad5-nCoV vaccine is based on recombinant technology and uses type 5 adenovirus as a vector, developing a genetic mutation that causes a defect in viral replication. All tested participants will receive single doses of the vaccines, administered intramuscularly or intradermally, and will have, depending on the trial, monthly, semi-annual and annual follow-up (NCT04341389, 2020; NCT04324606, 2020; NCT04283461, 2020; NCT04327206, 2020).

Regarding the biases of the reviewed studies (Table 4), 5 types were listed for methodological quality analysis according to the tool provided by Cochrane. The first bias was that of selection; defined by random sequence generation and allocation hiding; if the articles make this explicit, they are considered as low risk of bias, if not, as high risk of bias. If not mentioned, they are considered at risk of uncertain bias.

The performance bias concerns the measures used to blind, both professionals and study participants, thus ensuring the low risk of errors in conduct by both parties that may compromise the quality of the study. The detection bias assesses the blindness of the outcome evaluators, in order to avoid bias in the evaluation of the case and control groups. Friction bias assesses all possible data related to outcomes, their reasons and whether all data included or lost was recorded, avoiding outcomes that contain only data favorable to the study. Finally, the reporting bias assesses the possibility of including only outcomes favorable to the study, thus excluding outcomes that refute or contradict the question to be answered in the randomized clinical trial (DE CARVALHO A, et al., 2013).
<table>
<thead>
<tr>
<th>Identification</th>
<th>N sample and type of participant</th>
<th>Methodological design</th>
<th>Comparison groups and Characterization of the intervention protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhou Y. et al., 2020.</td>
<td>N=46 Respiratory distress (≥30 times / min), Oxygen saturation ≤93% at rest, Arterial partial pressure of oxygen (PaO2) / fraction of inspiration O2 (FiO2) ≤ 300 mmHg (1 mmHg = 0.133 kPa), Respiratory failure.</td>
<td>Randomized clinical trial with 48 participants lasting 28 days, with 4 points of analysis of the patients.</td>
<td>Patients randomized to the intervention group will receive methylprednisolone (intravenous injection, 1–2 mg/kg/day for 3 days), control group will not receive glucocorticoid therapy.</td>
</tr>
<tr>
<td>NCT04328285</td>
<td>N = 1200 Health workers involved in handling suspects or confirmed with COVID-19.</td>
<td>Randomized double-blind placebo-controlled clinical trial, triple masking, Phase 3</td>
<td>COVIDAXIS 1: Hydroxychloroquine (HCQ) versus placebo; HCQ 200 mg : Day 1: 2 tablets on the evening Day 2: 2 tablets on the morning once daily Placebo of HCQ: Day 1: 2 tablets on the evening Day 2: 2 tablets on the morning once daily COVIDAXIS 2: Lopinavir/ritonavir (LPV/r) versus placebo. LPV/r 200/50 mg, 2 tablets twice daily. Placebo of LPV/r, 2 tablets twice daily.</td>
</tr>
<tr>
<td>NCT04329923</td>
<td>N = 400 Cohort 1: double-blind clinical trial with high doses of hydroxychloroquine for home treatment. Cohort 2: randomized study with different doses of hydroxychloroquine in hospitalized patients. Cohort 3: double-blind clinical trial testing low doses of hydroxychloroquine as prevention in healthcare professionals.</td>
<td>RCT, triple masking, Phase 2</td>
<td>Cohort 1: hydroxychloroquine, 400mg twice a day for 14 days and placebo control Cohort 2: high doses of hydroxychloroquine, 600 mg twice a day in hospitalized patients for 14 days, compared to low doses of hydroxychloroquine, 600 mg once a day, during 7 days in hospitalized patients. Cohort 3: hydroxychloroquine 600 mg once a day for 2 months for health professionals as a prevention, compared to placebo for 2 months.</td>
</tr>
<tr>
<td>NCT04304055</td>
<td>N = 3040 Researchers want to evaluate the effectiveness of testing and treating patients and prophylaxis with hydroxychloroquine for all contacts.</td>
<td>RCT Open Label, Phase 3</td>
<td>Control group: no intervention Index cases will be collected from swab confirmed with PCR on days 3 and 7. Clinical and demographic information will be collected from all patients. Experiment: test, treat and prevent SARS-CoV-2 with hydroxychloroquine, 200mg tablets, 800mg on day 1, and 400mg (days 2,3,4, 5, 6 and 7) also collecting all clinical, demographic and epidemiological information. Swab PCR will be done on day 14 of the study.</td>
</tr>
<tr>
<td>NCT04313322</td>
<td>N = 5 Patients diagnosed with COVID-19 will receive 3 intravenous doses of WJ-MSCs consisting of 1X10e6 / kg.</td>
<td>CT Open Label, Phase 1</td>
<td>Experiment: WJ-MSCs WJ-MSCs will be derived from newborn medullary tissue, screened for HIV1 / 2, HBV, CMV, mycoplasma, and an enriched culture for MSCs. WJ-MSCs will be administered and a 25ml suspension of saline containing 0.5% human albumin.</td>
</tr>
</tbody>
</table>
| NCT04331834 | **N = 440**
Health professionals at high risk of SARS-CoV-2 infection | RCT Quadruple masking,
Phase 3 | Experiment: SARS-CoV-2 prophylaxis
Participants will receive 400mg once time day of hydroxychloroquine for the first 4 days, followed by 400mg per week for the next 6 months.
Control group will receive placebo for comparison in the same scheme as the intervention group. |
|---|---|---|---|
| NCT04354428 | **N = 630**
Randomized study for the treatment of severe acute respiratory syndrome in adults at high risk of infection without the need for hospitalization. | RCT Double masking,
Phase 2, Pase 3 | Placebo: ascorbic acid and folic acid
Ascorbic acid: 500mg twice a day (1st day) + 250mg twice a day for 9 days + folic acid 800 µg once a day (1st day) followed by 400µg once a day for another 4 days
Experiment: HCQ + folic acid
HCQ 400mg twice day (1st day) + 200mg twice a day for 9 days + placebo
Experiment: HCQ + azithromycin
HCQ 400mg twice a day (1st day) + 200mg twice a day for 9 days + azithromycin 500mg once a day (1st day) + 250mg once a day for 4 days. |
| NCT04352608 | **N = 744**
Total of 744 participants, 144 in phase 1, 600 in phase 2. Participants will receive 2 doses of vaccine or placebo on days 14 and 28. *
RCT, Quadruple masking,
Phase 1, Phase 2, double blind | Day 14 of the trial: 2 medium doses (600SU / 0.5ml), 2 high doses (1200SU / 0.5ml), placebo in the control group
Day 28 of the trial: 2 medium doses (600SU / 0.5ml), 2 high doses (1200SU / 0.5ml), placebo in the control group. |
| NCT04341389 | **N = 500**
This clinical trial is designed to evaluate the immunogenicity and safety of Ad5-nCoV which encodes for a full-length spike (S) protein of SARS-CoV-2. | RCT, Double masking,
Phase 2, double blinded | Group 1: Ad5-nCoV administered through 1.0 mL intramuscular injection in the deltoid muscle on Day 0 (1×10^11vp)
Group 2: Ad5-nCoV administered through 1.0 mL intramuscular injection in the deltoid muscle on Day 0 (5×10^10vp)
Placebo group: Placebo administered through 1.0 mL intramuscular injection in the deltoid muscle on Day 0 |
| NCT04318015 | **N = 400**
Chemoprophylaxis with Hydroxychloroquine in Healthcare Personnel in Contact With COVID-19 Patients
RCT, Quadruple masking,
triple blinded | 200mg of hydroxychloroquine per day vs. placebo
High risk: Hydroxychloroquine 200mg per day for 60 days
High risk: Placebo tablet per day for 60 days
Low risk: Hydroxychloroquine 200mg per day for 60 days
Low risk: Placebo tablet per day for 60 days. |
<table>
<thead>
<tr>
<th>Study ID</th>
<th>Description</th>
<th>Design</th>
<th>Interventions</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT04328961</td>
<td>N = 2000. The study will include 2000 participants, male and female between 18 and 80 years old, including close contacts to patients tested positive for Covid-19.</td>
<td>RCT, Double masking, blinded</td>
<td>Placebo: ascorbic acid. Intervention: hydroxychloroquine. Hydroxychloroquine 400mg 1x / day for 3 days + 200mg 1x / day for 11 days. Ascorbic acid 500mg 1x / day for 3 days + 250mg 1x / day for 11 days.</td>
</tr>
<tr>
<td>NCT04341441</td>
<td>The study will have 3000 health professionals as participants</td>
<td>RCT, Triple masking, blinded</td>
<td>- Hydroxychloroquine treatment group: They will receive a 200 mg oral dose daily following day 1 dose of 400 mg orally once. - Once weekly randomized treatment group: They will receive the proposed dose of hydroxychloroquine for prophylaxis of malaria is 6.5 mg/kg per dose orally weekly on the same day (each week). - Placebo: 2 pills a day - Non-randomized group of health professionals and rescuers in chronic use of oral hydroxychloroquine for their autoimmune diseases.</td>
</tr>
<tr>
<td>NCT04313127</td>
<td>108 participants, aged between 18 and 60 years, adults, previously healthy</td>
<td>Non randomized CT, Open label, Phase 1</td>
<td>Group 01: Low dose. Subjects received a dose of 5E10 vp Ad5-nCoV Group 02: Average dose. Subjects received a dose of 1E11 vp Ad5-nCoV Group 03: High doses. Subjects received a dose of 1.5E11 vp Ad5-nCoV</td>
</tr>
<tr>
<td>NCT04344379</td>
<td>The study aims to select 900 health professionals, who tested negative for SARS-CoV-2</td>
<td>RCT double masking, Phase 3</td>
<td>Active comparator: hydroxychloroquine, 200 mg BID per day Placebo comparator: hydroxychloroquine placebo, 200 mg BID per day Active comparator: azithromycin, 250 mg per day</td>
</tr>
<tr>
<td>NCT04327206</td>
<td>The study consists of 4170 health professionals</td>
<td>RCT Open label, phase 3</td>
<td>Group 01: You will receive a dose of BCG vaccine Group 02: Participants will not receive the BCG vaccine</td>
</tr>
<tr>
<td>NCT04324606</td>
<td>1112 volunteers aged between 18 and 55 years were selected</td>
<td>RCT, Single masking, Phase 1, Phase 2</td>
<td>Group 1a: Volunteers will receive a single dose of 5x10^10 vp ChAdOx1 nCoV-19 Group 1b: Volunteers will receive a single standard dose of the MenACWY vaccine administered intramuscularly Group 2a: Volunteers will receive a single dose of 5x10^10 vp ChAdOx1 nCoV-19 Group 2b: Volunteers will receive a single standard dose of the MenACWY vaccine administered intramuscularly Group 3: Volunteers will receive a dose of 5x10^10 vp ChAdOx1 nCoV-19 at week 0 and a dose of 2.5x10^10 vp ChAdOx1 nCoV-19 at week 4 Group 4a: Volunteers will receive a single dose of 5x10^10 vp ChAdOx1 nCoV-19 Group 4b: Volunteers will receive a single standard dose of the MenACWY vaccine administered intramuscularly.</td>
</tr>
<tr>
<td>Study ID</td>
<td>Population Description</td>
<td>Design and Administration</td>
<td>Groups</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>NCT04353037</td>
<td>850 health professionals aged between 50 and 75 years</td>
<td>RCT, Double masking, Phase 2</td>
<td>Group A: Patients tested for COVID-19 who meet the symptomatology and age requirements for eligibility. Damn: HCQ. Group B: Health workers infected by COVID-19 (confirmed by accepted tests) in 2 months. Damn: HCQ.</td>
</tr>
<tr>
<td>NCT04283461</td>
<td>45 people aged between 18 and 55 years</td>
<td>Non randomized clinical trial, Open label, Phase 1</td>
<td>Group 01: 25 mcg of mRNA-1273 administered by intramuscular injection of 0.5 mL into the deltoid muscle on days 1 and 29, n = 15 (4 sentinel, 11 not sentinel) Group 02: 100 mcg of mRNA-1273 administered by intramuscular injection of 0.5 mL into the deltoid muscle on days 1 and 29, n = 15 (4 sentinel, 11 not sentinel) Group 03: 250 mcg of mRNA-1273 administered by intramuscular injection of 0.5 mL into the deltoid muscle on Days 1 and 29, n = 15 (4 sentinel, 11 not sentinel).</td>
</tr>
<tr>
<td>NCT04336410</td>
<td>40 participants aged between 18 and 50 years</td>
<td>Non randomized clinical trial, Open label, Phase 1</td>
<td>Group 01: Participants will receive an ID injection of 1.0 milligram (mg) of INO-4800, followed by EP using the CELLECTRA® 2000 device per dosing visit Group 02: Participants will receive two injections of 1.0 mg ID (total 2.0 mg per dose visit) of INO-4800, followed by PE using the CELLECTRA® 2000 device per dose visit</td>
</tr>
<tr>
<td>NCT04351724</td>
<td>500 participants aged between 18 and 99 years</td>
<td>RCT Open Label, Phase 2, Phase 3</td>
<td>Group 01: Hydroxychloroquine 200 mg 2-0-2 on day 1, followed by 200 mg 1-0-1 or Chloroquine 250 mg 2-0-2, as available Group 02: patients will be treated with a “ “ standard of care “”, which prevents treatment with lopinavir / ritonavir or hydroxychloroquine Group 03: blockade of the renin-angiotensin system (SARS) by ingesting candesartan starting with 4mg once daily and titrated for patients with normotension 120/80 mmHG are eligible Group 04: RAS non-blocking antihypertensive agents, titrated to normotension Group 05: Clazakizumab. Patients with respiratory deterioration qualify for this treatment arm</td>
</tr>
<tr>
<td>CAO B, et al., 2020</td>
<td>-</td>
<td>Protocol for the administration of lopinavir/ritonavir to such patients and their clinical monitoring.</td>
<td>Lopinavir / ritonavir 200 mg / 50 mg - two tablets every 12 h for 14 days or when becoming asymptomatic after 7 days it is used. And for patients who are unable to take medication orally, via nasogastric sounds, 400 mg of lopinavir / 100 mg of ritonavir 5 ml of suspension every 12 hours for 14 days or when becoming asymptomatic after 7 days is used.</td>
</tr>
</tbody>
</table>

Table 4 - Methodological quality

<table>
<thead>
<tr>
<th>Identification</th>
<th>Selection bias</th>
<th>Performance bias</th>
<th>Detection bias</th>
<th>Friction bias</th>
<th>Reporting bias</th>
<th>Other biases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhou Y, et al., 2020.</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
</tr>
<tr>
<td>NCT04328285</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
</tr>
<tr>
<td>NCT04329923</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
</tr>
<tr>
<td>NCT04304053</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
</tr>
<tr>
<td>NCT04313322</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
</tr>
<tr>
<td>NCT04318015</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
</tr>
<tr>
<td>NCT04328961</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
</tr>
<tr>
<td>NCT0431441</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
</tr>
<tr>
<td>NCT04313127</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
</tr>
<tr>
<td>NCT0434379</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
</tr>
<tr>
<td>NCT04327206</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
</tr>
<tr>
<td>NCT04324606</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
</tr>
<tr>
<td>NCT04334928</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
</tr>
<tr>
<td>NCT04353037</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
</tr>
<tr>
<td>NCT04283461</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
</tr>
<tr>
<td>NCT0436410</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
</tr>
<tr>
<td>NCT04351724</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
</tr>
<tr>
<td>CAO B, et al., 2020.</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Low risk of bias</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
<td>Study still being conducted</td>
</tr>
</tbody>
</table>

DISCUSSION

The new SARS-CoV-2 coronavirus, which appeared in China on December 8, 2019, quickly spread around the world, characterizing a pandemic according to the WHO in early March 2020. As a result, the search intensified for a treatment for COVID-19 that is effective, safe and effective, since it is characterized not only by a disease of mild to moderate severity, but that can also generate Severe Acute Respiratory Syndrome (SARS) leading to a rate low lethality, but which, compared to certain risk groups, represents a significant amount. Thus, in addition to clinical support and protocol treatment, several researchers around the world are testing the use of drugs of the most diverse classes in order to reduce the morbidity and mortality of the disease. The main drugs found in the research of this systematic review are: antivirals, Chloroquine, Hydroxychloroquine and glucocorticoids, which will be discussed below (YOUNG HU, et al., 2020; ZHOU Y, et al., 2020).

Hydroxychloroquine has been widely used in the world for about seventy years, being widely used for the treatment of malaria and chronic inflammatory diseases, such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). However, for use in SARS-CoV-2 the result remains uncertain. In vitro studies have shown that the drug can block viral infection by increasing endosomal pH and interfering with the glycosylation of the SARS-CoV cell receptor, as well as in the proteolytic process. The study authors also mention the possibility of an immunomodulatory effect of the drug and point out that due to the low cost and safety of the drug and dosage, it would become a viable alternative (CORTEGIANI A, et al., 2020; SANDERS J, et al., 2020).

A French study published on March 17, 2020 evaluated the efficacy of Hydroxychloroquine as monotherapy or associated with Azithromycin in patients with COVID-19. Forty six patients diagnosed with the disease participated in the study and were followed up for 14 days, with daily nasopharyngeal swab collection and viral load assessment using the RT-PCR (Real-time reverse transcription-polymerase chain) technique. Of these, 26 participants received 200 mg of Hydroxychloroquine orally, in three daily doses in the first ten days; 6 also received Azithromycin orally and 6 patients did not complete the test. Patients who used the medication had a higher rate of viral clearance from the sixth day (70% vs 12.5%, p = 0.001) and those who received it in association with Azithromycin had 100% clearance on the sixth day. The results are very satisfactory, but the study has several biases, such as a very small sample, in addition to being non-blind and non-randomized, and also cannot associate the primary outcome with clinical improvement or decreased transmission. Therefore, caution is still needed when using this medication for both SARS and MERS (Middle East Respiratory Syndrome) - and also a member of the coronavirus family; since the medication has adverse effects that can be serious and also increase the morbidity and mortality of patients treated with it (GAUTRET P, et al., 2020; SANDERS J, et al., 2020).

The glucocorticoid Methylprednisolone was also used with the intention of decreasing the host’s response in the lungs, which could contribute to the development of the Acute respiratory distress syndrome (ARDS). However, the threshold between benefits and adverse effects is very thin, as it can decrease viral clearance and increase the risk of secondary infection. Methylprednisolone was evaluated at a dose of 1-2 mg/kg/day, intravenously, for 3 days, in critically ill patients, although it has been widely used in previous SARS epidemics, especially in 2003, has controversial literature regarding its effectiveness. Some studies have shown that its mechanism of action of corticosteroids would involve the reduction of inflammatory interleukins such as Interleukin 8 (IL-8), and by reducing the inflammatory reaction in the lungs there is a reduction in the chance of developing respiratory failure, however others have shown to be a risk factor for mortality, with the presence of complications such as hyperglycemia, psychosis and avascular necrosis (ZHOU Y, et al., 2020; TSANG OTY, et al., 2003; SANDERS J, et al., 2020).

Antiretrovirals, of which Lopinavir and Ritonavir stand out, were tested in vitro and showed inhibition of the new coronavirus type 3-chymotrypsin protease. A clinical trial was carried out with 199 patients, 99 received the medication and it was observed that these patients did not have a better outcome than the control group, that is, there was no significant clinical improvement and the mortality rate after 28 days was similar. The authors themselves report that there were several biases in the study, such as the absence of blinding and the collection of less frequent samples (CAO B, et al., 2020).
Among all the studies conducted, the one with the greatest range of therapeutic options is carried out by the Medical University of Vienna, in which in addition to the drugs previously mentioned, there are also: Rivaroxabana, Clazakizumab, Candesartan, thromboprophylaxis and other antihypertensive drugs whose mechanism of action do not involve blocking the Renin-Angiotensin-Aldosterone pathway (NCT04351724, 2020). The therapeutic effect of monoclonal antibodies seems to be involved in blocking IL-6 (differently from corticosteroids, which in the inflammatory cascade seem to influence IL-8 more), which is involved in the dysregulation of the immune and inflammatory response to infection.

The mechanism that would make antihypertensive drugs involved in the renin–angiotensin system (RAS) is directly related to the pathophysiology of the disease in which a certain interaction of the S protein virus with the host Angiotensin-converting enzyme II (ACE II) receptor would occur. Thus, of all the medications present in the researched studies up to the time this review was written, there was no confirmed evidence of a specific drug for the treatment of COVID-19 according to the guidelines of the World Health Organization through the following document "Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected "(CORTEGIANI A, et al., 2020; SANDERS J, et al., 2020).

In addition to treatment, research has been instituted that also involves the use of prophylaxis by health professionals working to combat COVID-19, as it is known that how the transmission of the disease remains not fully described - the possibilities of the equipment itself being reported individual protection may not be enough to protect them, which generated about 4% of infection. Thus, a study at the Center Hospitalier Universitaire de Saint Etienne in France is being conducted using the following prophylactic options: 1) Hydroxychloroquine, 2) Hydroxychloroquine placebo, 3) Lopinavir and Ritonavir and 4) Antiretroviral placebo.

On the other hand, contact prophylaxis is being addressed in a study by Fundacio Lluita Contra la SIDA in which contacts of infected patients will receive Hydroxychloroquine 800mg on the first day and 400mg on subsequent days, which may vary from 4 to 7 days. The research is based on the fact that previous studies on influenza indicated that antiviral drugs can reduce infectivity, since it reduces the viral load in the pulmonary secretion of patients (NCT04328285, 2020; NCT04304053, 2020).

Although, as previously mentioned, several information about the new disease is inconclusive, such as pathophysiology and form of transmission, the genetic material of the virus was quickly released by the Chinese, which allowed research on vaccines to be carried out promptly. And so, only efforts to seek drugs for prophylaxis also continue to grow, during the development of this review, a study was conducted by Sinovac Biotech Co in which the safety and immunogenicity of a possible inactivated SARS CoV-2 virus vaccine for prophylaxis COVID-19 is being evaluated (NCT04352608, 2020).

Meanwhile, the Institute of Biotechnology, Academy of Military Medical Sciences, PLA of China is also evaluating the safety and immunogenicity of its possible Ad5-nCoV recombinant vaccine, which encodes a SARS-CoV-2 virus protein and acts on viral replication. In addition, the laboratory Inovio Pharmaceuticals conducts a study in which it also assesses the safety, tolerance and immunogenicity of a vaccine named by the same as INO-4800 (NCT04336410, 2020; ZHOU Y, et al., 2020).

Study limitations

Although it is a systematic review with works on such a current topic, some limitations of this work must be taken into account. In the researched literature, the severity of the disease was not classified in the same way, with the same parameters, in the different studies found. Regarding treatment, the choice of drugs and the criteria for using them had relevant differences. As this is a current topic, it is possible to identify the asymmetry between the studies, either by the amount of drugs used, by the period in which they were used, by the samples used and as previously mentioned by the criteria used to receive or not receive such drugs. However, in the course of the studies themselves, it is expected that they will reach the necessary and desired conclusions all over the world regarding this new disease that has so quickly become a worldwide public health emergency (YONG HU, et al., 2020, CORTEGIANI A, et al., 2020).
FINAL CONSIDERATIONS

The SARS-CoV-2 pandemic has become a serious public health problem worldwide. In view of the international emergency situation established by COVID-19, until now there is no scientific evidence to recommend the use of any of the drugs tested in ongoing trials. For this reason, it is necessary to maintain investments in research and clinical trials. This review serves as a basis for future research and seeks to collaborate effectively in the favorable outcome of patients infected with SARS-CoV-2.

REFERENCES