Citocinas séricas da resposta imune em adultos e neonatos na imunidade treinada induzida por BCG: revisão sistemática
##plugins.themes.bootstrap3.article.main##
Resumo
Objetivo: Avaliar as principais citocinas caracterizadas após a indução da imunidade treinada pela vacina BCG, em adultos e neonatos saudáveis, e verificar se os resultados encontrados nesses dois grupos apresentam semelhanças ou divergências nas citocinas. Métodos: Trata-se de uma revisão sistemática da literatura, utilizando os bancos de dados do NCBI (plataforma PubMed) e Periódicos Capes para busca e seleção dos artigos, utilizando cinco descritores. Resultados: Os resultados demonstraram que não há grandes diferenças entre os achados das citocinas dosadas nos adultos e nos neonatos, após a indução da imunidade treinada, pela vacina BCG. Estes resultados sugerem que a imunidade treinada ocorre em qualquer idade. Dois dos estudos selecionados abordavam resultados de citocinas dosadas após um ano, demonstrando a permanência da imunidade treinada induzida pela BCG neste período. A IL-6, IL-1β e o TNF-α foram as citocinas que mais se destacaram nos dez artigos selecionados, pois demonstraram altos níveis séricos na maioria dos estudos. Considerações finais: É necessário realizar mais estudos de longo prazo para o melhor entendimento da imunidade treinada, o que beneficiaria o avanço de novas vacinas visando proteção humana contra diferentes tipos de infecções por micro-organismos.
##plugins.themes.bootstrap3.article.details##
Copyright © | Todos os direitos reservados.
A revista detém os direitos autorais exclusivos de publicação deste artigo nos termos da lei 9610/98.
Reprodução parcial
É livre o uso de partes do texto, figuras e questionário do artigo, sendo obrigatória a citação dos autores e revista.
Reprodução total
É expressamente proibida, devendo ser autorizada pela revista.
Referências
2. ARTS RJ, et al. BCG vaccination protects against experimental viral infection in humans through the Induction of Cytokines Associated with trained immunity. Cell Host and Microbe, 2018; 23(1): 89-100.
3. BEKKERING S, et al. In vitro experimental model of trained innate immunity in human primary monocytes. Clinical and Vaccine Immunology, 2016; 23(12): 926-933.
4. BEKKERING S, et al. Metabolic induction of trained immunity through the mevalonate pathway. Cell, 2018; 172, (1–2): 135-146.e9.
5. CHENG SC, et al. mTOR/HIF1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 2015; 345(6204): 1-18.
6. CIROVIC B, et al. BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment. Cell Host and Microbe, 2020; 28(2): 322-334.e5.
7. COVIÁN C, et al. BCG-Induced cross-protection and development of trained immunity: implication for vaccine design. Frontiers in Immunology, 2019; 10(2806): 1-14.
8. CURTIS N, et al. Considering BCG vaccination to reduce the impact of COVID-19. Elsevier, 2020; 395: 1-3.
9. FREYNE B, et al. Neonatal BCG vaccination influences cytokine responses to toll-like receptor ligands and heterologous antigens. The Journal of Infectious Diseases, 2018; 217(11): 1798-1808.
10. GOURBAL B, et al. Innate immune memory: an evolutionary perspective. Immunol. Reviews, 2018; 283(1): 21-40.
11. JANG D, et al. The role of tumor necrosis factor alpha (TNF- α ) in autoimmune disease and current TNF-α inhibitors in therapeutics. International Journal of Molecular Sciences, 2021; 22(2719): 1-16.
12. JOHN SR. Interleukin-6 family cytokines. Cold Spring Harbor perspectives in Biology, 2018; 2: 1-17.
13. KAUFMANN E, et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell, 2018; 172 (1–2): 176-190.e19.
14. KEMANETZOGLOU E, ANDREADOU E. CNS demyelination with TNF- α blockers. Current Neurology and Neuroscience Reports, 2017; 17(36): 1-15.
15. KLEINNIJENHUIS J, et al. Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proceedings of the National Academy of Sciences of the United States of America, 2012; 109(43): 17537-17542.
16. KLEINNIJENHUIS J, et al. Long-lasting effects of BCG vaccination on both heterologous th1/th17 responses and innate trained immunity. Journal of Innate Immunity, 2013; 6(2): 152-158.
17. KLEINNIJENHUIS J, et al. BCG-induced trained immunity in NK cells: role for non-specific protection to infection. Clinical Immunology, 2014; 155(2): 213-219.
18. LIU Y, et al. BCG-induced trained immunity in macrophage: reprograming of glucose metabolism: BCG-induced trained immunity by enhanced glycolysis and glutamine-driven tricarboxylic acid cycle in macrophage. International Reviews of Immunology, 2020; 39(3): 83-96.
19. MARQUESI KF, et al. Resposta imune e quimiocinas: breve revisão da literatura autores. Revista Científica - União das Faculdades dos Grandes Lagos, 2018; 1(1): 1-8.
20. MERINI LR, et al. Citocinas pró-inflamatórias em artrite induzida por adjuvante: uma revisão da ação imunomoduladora de substâncias bioativas. Scientia Amazonia, 2012; 1(3): 27-39.
21. MITROULIS I, et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell Press, 2018; 172: 147–161.
22. MOORLAG SJ, et al. Non-specific effects of BCG vaccine on viral infections. Clinical Microbiology and Infection, 2019; 25(12): 1473-1478.
23. MOORLAG SJ, et al. BCG vaccination induces long-term functional reprogramming of human neutrophils. Cell Reports, 2020; 33(7): 108387.
24. MULDER WJ, et al. Therapeutic targeting of trained immunity Willem. Nature Reviews Drug Discovery, 2020; 18(7): 553-566.
25. NAMAKULA R, et al. Monocytes from neonates and adults have a similar capacity to adapt their cytokine production after previous exposure to BCG and β-glucan. PLoS ONE, 2020; 15(2): 1-8.
26. NEMES E, et al. Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination. New England Journal of Medicine, 2018; 379(2): 138-149.
27. NETEA MG, et al. Trained immunity: A program of innate immune memory in health and disease. Science, 2016; 352: 1-27.
28. NETEA MG, VAN JDM. Trained immunity: an ancient way of remembering. Cell Host and Microbe, 2017; 21(3): 297-300.
29. NETEA MG, et al. Trained immunity: a memory for innate host defense. Cell Host and Microbe, 2011; 9(5): 355-361.
30. NISSEN TN, et al. Bacillus Calmette-Guérin vaccination at birth and in vitro cytokine responses to non-specific stimulation: a randomized clinical trial. European Journal of Clinical Microbiology and Infectious
Diseases, 2017; 37(1): 29-41.
31. PAGE MJ, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 2021; 372(71).
32. PRENTICE S, et al. BCG-induced non-specific effects on heterologous infectious disease in Ugandan neonates: an investigator-blind randomized controlled trial. The Lancet Infectious Diseases, 2021; 21(7): 993-
1003.
33. RUSEK P, et al. Infectious agents as stimuli of trained innate immunity. International Journal of Molecular Sciences, 2018; 19(2) 1-13.
34. SISCO MC, et al. Newly sequenced genomes of four bacillus calmette guerin vaccines. Memorias do Instituto Oswaldo Cruz, 2020; 115(4): 2-5.
35. SMITH SG, et al. Whole blood profiling of Bacillus Calmette–Guérin-Induced trained innate immunity in infants identifies epidermal growth factor, IL-6, platelet-derived growth factor-AB/BB, and Natural Killer cell activation. Frontiers in Immunology, 2017; 8: 1-11.
36. SORENSEN B, et al. Early BCG-Denmark and neonatal mortality among Infants weighing <2500 g: a randomized controlled trial. Clinical Infectious Diseases, 2017; 65(7): 1183-1190.
37. TISONCIK JR, et al. Into the eye of the cytokine storm. Microbiology and Molecular Biology Reviews, 2012; 76: 16-32.