Citocinas séricas da resposta imune em adultos e neonatos na imunidade treinada induzida por BCG: revisão sistemática

##plugins.themes.bootstrap3.article.main##

Lara Fidelis Vieira Lemes
Hermínio Maurício da Rocha Sobrinho
Iasmim Ribeiro da Costa
Antonio Márcio Teodoro Cordeiro Silva
Irmtraut Araci Hoffmann Pfrimer

Resumo

Objetivo: Avaliar as principais citocinas caracterizadas após a indução da imunidade treinada pela vacina BCG, em adultos e neonatos saudáveis, e verificar se os resultados encontrados nesses dois grupos apresentam semelhanças ou divergências nas citocinas. Métodos: Trata-se de uma revisão sistemática da literatura, utilizando os bancos de dados do NCBI (plataforma PubMed) e Periódicos Capes para busca e seleção dos artigos, utilizando cinco descritores. Resultados: Os resultados demonstraram que não há grandes diferenças entre os achados das citocinas dosadas nos adultos e nos neonatos, após a indução da imunidade treinada, pela vacina BCG. Estes resultados sugerem que a imunidade treinada ocorre em qualquer idade. Dois dos estudos selecionados abordavam resultados de citocinas dosadas após um ano, demonstrando a permanência da imunidade treinada induzida pela BCG neste período. A IL-6, IL-1β e o TNF-α foram as citocinas que mais se destacaram nos dez artigos selecionados, pois demonstraram altos níveis séricos na maioria dos estudos. Considerações finais: É necessário realizar mais estudos de longo prazo para o melhor entendimento da imunidade treinada, o que beneficiaria o avanço de novas vacinas visando proteção humana contra diferentes tipos de infecções por micro-organismos.

##plugins.themes.bootstrap3.article.details##

Como Citar
LemesL. F. V., SobrinhoH. M. da R., CostaI. R. da, SilvaA. M. T. C., & PfrimerI. A. H. (2022). Citocinas séricas da resposta imune em adultos e neonatos na imunidade treinada induzida por BCG: revisão sistemática. Revista Eletrônica Acervo Saúde, 15(8), e10511. https://doi.org/10.25248/reas.e10511.2022
Seção
Revisão Bibliográfica

Referências

1. AABY P, BENN CS. Saving lives by training innate immunity with bacille Calmette-Guérin vaccine. Proceedings of the National Academy of Sciences of the United States of America, 2012; 109(43): 17317-17318.

2. ARTS RJ, et al. BCG vaccination protects against experimental viral infection in humans through the Induction of Cytokines Associated with trained immunity. Cell Host and Microbe, 2018; 23(1): 89-100.

3. BEKKERING S, et al. In vitro experimental model of trained innate immunity in human primary monocytes. Clinical and Vaccine Immunology, 2016; 23(12): 926-933.

4. BEKKERING S, et al. Metabolic induction of trained immunity through the mevalonate pathway. Cell, 2018; 172, (1–2): 135-146.e9.

5. CHENG SC, et al. mTOR/HIF1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 2015; 345(6204): 1-18.

6. CIROVIC B, et al. BCG vaccination in humans elicits trained immunity via the hematopoietic progenitor compartment. Cell Host and Microbe, 2020; 28(2): 322-334.e5.

7. COVIÁN C, et al. BCG-Induced cross-protection and development of trained immunity: implication for vaccine design. Frontiers in Immunology, 2019; 10(2806): 1-14.

8. CURTIS N, et al. Considering BCG vaccination to reduce the impact of COVID-19. Elsevier, 2020; 395: 1-3.

9. FREYNE B, et al. Neonatal BCG vaccination influences cytokine responses to toll-like receptor ligands and heterologous antigens. The Journal of Infectious Diseases, 2018; 217(11): 1798-1808.

10. GOURBAL B, et al. Innate immune memory: an evolutionary perspective. Immunol. Reviews, 2018; 283(1): 21-40.

11. JANG D, et al. The role of tumor necrosis factor alpha (TNF- α ) in autoimmune disease and current TNF-α inhibitors in therapeutics. International Journal of Molecular Sciences, 2021; 22(2719): 1-16.

12. JOHN SR. Interleukin-6 family cytokines. Cold Spring Harbor perspectives in Biology, 2018; 2: 1-17.

13. KAUFMANN E, et al. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell, 2018; 172 (1–2): 176-190.e19.

14. KEMANETZOGLOU E, ANDREADOU E. CNS demyelination with TNF- α blockers. Current Neurology and Neuroscience Reports, 2017; 17(36): 1-15.

15. KLEINNIJENHUIS J, et al. Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proceedings of the National Academy of Sciences of the United States of America, 2012; 109(43): 17537-17542.

16. KLEINNIJENHUIS J, et al. Long-lasting effects of BCG vaccination on both heterologous th1/th17 responses and innate trained immunity. Journal of Innate Immunity, 2013; 6(2): 152-158.

17. KLEINNIJENHUIS J, et al. BCG-induced trained immunity in NK cells: role for non-specific protection to infection. Clinical Immunology, 2014; 155(2): 213-219.

18. LIU Y, et al. BCG-induced trained immunity in macrophage: reprograming of glucose metabolism: BCG-induced trained immunity by enhanced glycolysis and glutamine-driven tricarboxylic acid cycle in macrophage. International Reviews of Immunology, 2020; 39(3): 83-96.

19. MARQUESI KF, et al. Resposta imune e quimiocinas: breve revisão da literatura autores. Revista Científica - União das Faculdades dos Grandes Lagos, 2018; 1(1): 1-8.

20. MERINI LR, et al. Citocinas pró-inflamatórias em artrite induzida por adjuvante: uma revisão da ação imunomoduladora de substâncias bioativas. Scientia Amazonia, 2012; 1(3): 27-39.

21. MITROULIS I, et al. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell Press, 2018; 172: 147–161.

22. MOORLAG SJ, et al. Non-specific effects of BCG vaccine on viral infections. Clinical Microbiology and Infection, 2019; 25(12): 1473-1478.

23. MOORLAG SJ, et al. BCG vaccination induces long-term functional reprogramming of human neutrophils. Cell Reports, 2020; 33(7): 108387.

24. MULDER WJ, et al. Therapeutic targeting of trained immunity Willem. Nature Reviews Drug Discovery, 2020; 18(7): 553-566.

25. NAMAKULA R, et al. Monocytes from neonates and adults have a similar capacity to adapt their cytokine production after previous exposure to BCG and β-glucan. PLoS ONE, 2020; 15(2): 1-8.

26. NEMES E, et al. Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination. New England Journal of Medicine, 2018; 379(2): 138-149.

27. NETEA MG, et al. Trained immunity: A program of innate immune memory in health and disease. Science, 2016; 352: 1-27.

28. NETEA MG, VAN JDM. Trained immunity: an ancient way of remembering. Cell Host and Microbe, 2017; 21(3): 297-300.

29. NETEA MG, et al. Trained immunity: a memory for innate host defense. Cell Host and Microbe, 2011; 9(5): 355-361.

30. NISSEN TN, et al. Bacillus Calmette-Guérin vaccination at birth and in vitro cytokine responses to non-specific stimulation: a randomized clinical trial. European Journal of Clinical Microbiology and Infectious
Diseases, 2017; 37(1): 29-41.

31. PAGE MJ, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, 2021; 372(71).

32. PRENTICE S, et al. BCG-induced non-specific effects on heterologous infectious disease in Ugandan neonates: an investigator-blind randomized controlled trial. The Lancet Infectious Diseases, 2021; 21(7): 993-
1003.

33. RUSEK P, et al. Infectious agents as stimuli of trained innate immunity. International Journal of Molecular Sciences, 2018; 19(2) 1-13.

34. SISCO MC, et al. Newly sequenced genomes of four bacillus calmette guerin vaccines. Memorias do Instituto Oswaldo Cruz, 2020; 115(4): 2-5.

35. SMITH SG, et al. Whole blood profiling of Bacillus Calmette–Guérin-Induced trained innate immunity in infants identifies epidermal growth factor, IL-6, platelet-derived growth factor-AB/BB, and Natural Killer cell activation. Frontiers in Immunology, 2017; 8: 1-11.

36. SORENSEN B, et al. Early BCG-Denmark and neonatal mortality among Infants weighing <2500 g: a randomized controlled trial. Clinical Infectious Diseases, 2017; 65(7): 1183-1190.

37. TISONCIK JR, et al. Into the eye of the cytokine storm. Microbiology and Molecular Biology Reviews, 2012; 76: 16-32.