Eficácia da neuroestimulação não invasiva para o tratamento de distúrbios motores na Doença de Parkinson

##plugins.themes.bootstrap3.article.main##

Eduardo Rocha
Elias de Oliveira Barboza
Cecília Farias de Figueiredo
Silva Kelly Jacques Sousa de Assis
Ana Clara Oliveira
Celina Cláudia Israel Sefer

Resumo

Objetivo: Verificar a eficácia da neuroestimulação não invasiva para o tratamento da Doença de Parkinson. Métodos: Tratou-se de uma revisão de literatura de caráter qualitativo nas bases de dados Lilacs, SciElo e Pubmed. Foram incluídas as pesquisas referentes a neuroestimulação para o alívio de sintomas motores da DP, nos últimos cinco anos. Foram excluídos artigos cujo tratamento visava a melhora de sintomas cognitivos isoladamente, assim como os trabalhos que abordassem simultaneamente o tratamento farmacológico e/ou cirúrgico e o uso da neuroestimulação para o tratamento de outros sintomas ou outras patologias. Resultados: Foram encontrados 194 artigos e selecionados 28 conforme os critérios de inclusão e 166 foram excluídos. Foram observados efeitos positivos na maioria desses estudos, porém não havia uniformidade dos protocolos utilizados. Considerações finais: Esta revisão de literatura permitiu compreender os efeitos da estimulação magnética transcraniana repetitiva, estimulação transcriana de corrente direta, estimulação transcraniana de corrente alternada e da estimulação theta burst nos distúrbios motores da DP. No entanto, não foi encontrada uniformidade nos protocolos utilizados nos estudos. Com isso, são necessários mais estudos clínicos e com protocolos uniformes para melhor avaliar os possíveis efeitos na neuroplasticidade motora.

##plugins.themes.bootstrap3.article.details##

Como Citar
RochaE., BarbozaE. de O., FigueiredoC. F. de, AssisS. K. J. S. de, OliveiraA. C., & SeferC. C. I. (2022). Eficácia da neuroestimulação não invasiva para o tratamento de distúrbios motores na Doença de Parkinson. Revista Eletrônica Acervo Saúde, 15(7), e10620. https://doi.org/10.25248/reas.e10620.2022
Seção
Revisão Bibliográfica

Referências

1. BERETTA VS, et al. Transcranial direct current stimulation combined with physical or cognitive training in people with Parkinson’s disease: a systematic review. Journal of NeuroEngineering and Rehabilitation, 2020; 17(1).

2. BREEN DP, et al. Gut–brain axis and the spread of α‐synuclein pathology: vagal highway or dead end? Mov Disord., 2019; 34: 307–16.

3. BUENO MEB, et al. Effectiveness of acute transcranial direct current stimulation on non-motor and motor symptoms in Parkinson’s disease. Neuroscience Letters [Internet], 2019; 696: 46–51.

4. CHEN KS, CHEN R. Invasive and Noninvasive Brain Stimulation in Parkinson's Disease: Clinical Effects and Future Perspectives. Clin Pharmacol Ther., 2019; 106(4): 763-775.

5. CHUNG CL, et al. Transcranial Magnetic Stimulation Promotes Gait Training in Parkinson Disease. Ann Neurol., 2020; 88(5): 933-945.

6. COHEN OS, et al. Repetitive Deep TMS for Parkinson Disease: A 3-Month Double-Blind, Randomized Sham-Controlled Study. J Clin Neurophysiol., 2018; 35(2): 159-165.

7. CONCEIÇÃO NR, et al. Aerobic Exercise Combined With Transcranial Direct Current Stimulation Over the Prefrontal Cortex in Parkinson Disease: Effects on Cortical Activity, Gait, and Cognition. Neurorehabilitation and Neural Repair, 2021; 35(8): 717–28.

8. DAGAN M, et al. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson's disease. Mov Disord., 2018; 33(4): 642-646.

9. DEL FELICE A, et al. Personalized transcranial alternating current stimulation (tACS) and physical therapy to treat motor and cognitive symptoms in Parkinson's disease: A randomized cross-over trial. Neuroimage Clin., 2019; 22: 101768.

10. DESIDÉRIO DL. Efeito de campos magnéticos estáticos e compensados na proliferação celular in vitro. 2017. 109f. Tese (Doutorado em Ciências Odontológicas Aplicadas: Biologia Oral) - Faculdade de Odontologia de Bauru da Universidade de São Paulo, Bauru, 2017.

11. GAGLIARDI R, TAKAYANAGUI OM. Tratado de Neurologia da Academia Brasileira de Neurologia. 2ª ed. Rio de Janeiro: Elsevier, 2019.

12. GIGUÈRE N, et al. On cell loss and selective vulnerability of neuronal populations in Parkinson's disease. Front Neurol., 2018; 19: 455.

13. GODEIRO C, et al. Use of non-invasive stimulation in movement disorders: a critical review. Arquivos de Neuro-Psiquiatria, 2021; 79(7): 630-646.

14. HANOGLU L, et al. Preliminary findings on the role of high-frequency (5Hz) rTMS stimulation on M1 and pre-SMA regions in Parkinson’s disease. Neurosci Lett., 2020; 724: 134837.

15. HORN MA, et al. A New Stimulation Mode for Deep Brain Stimulation in Parkinson's Disease: Theta Burst Stimulation. Mov Disord., 2020; 35(8): 1471-1475.

16. JANKOVIC J, TAN EK. Parkinson’s disease: etiopathogenesis and treatment Journal of Neurology, Neurosurgery & Psychiatry, 2020; 91: 795-808.

17. KHEDR EM, et al. The Effect of High-Frequency Repetitive Transcranial Magnetic Stimulation on Advancing Parkinson's Disease With Dysphagia: Double Blind Randomized Clinical Trial. Neurorehabil Neural Repair, 2019; 33(6): 442-452.

18. KHEDR EM, et al. The effect of repetitive transcranial magnetic stimulation on cognitive impairment in Parkinson’s disease with dementia: pilot study. Restor Neurol Neurosci., 2020; 38(1): 55-66.

19. LEE HK, et al. Does transcranial direct current stimulation improve functional locomotion in people with Parkinson’s disease? A systematic review and meta-analysis. Journal of NeuroEngineering and Rehabilitation, 2019; 16(1).

20. LEE S, KIM MK. The Effect of Transcranial Direct Current Stimulation Combined with Visual Cueing Training on Motor Function, Balance, and Gait Ability of Patients with Parkinson’s Disease. Medicina, 2021; 57(11): 1146.
21. LI S, et al. Motor recovery and antidepressant effects of repetitive transcranial magnetic stimulation on Parkinson disease: A PRISMA-compliant meta-analysis. Medicine (Baltimore), 2020; 99(18): e19642.

22. MALLY J, et al. Follow up study: The influence of rTMS with high and low frequency stimulation on motor and executive function in Parkinson's disease. Brain Res Bull, 2017; 135: 98-104.

23. MATSUDA RH, et al. Estimulação magnética transcraniana: uma breve revisão dos princípios e aplicações. Revista Brasileira De Física Médica, 2019; 13(1): 49-56.

24. MISHRA RK, THRASHER AT. Transcranial direct current stimulation of dorsolateral prefrontal cortex improves dual-task gait performance in patients with Parkinson's disease: A double blind, sham-controlled study. Gait Posture, 2021; 84: 11-16.

25. MULLIN S, SCHAPIRA AHV. Pathogenic Mechanisms of Neurodegeneration in Parkinson Disease. Neurologic Clinics, 2015; 33(1): 1–17.

26. MURDOCK C, et al. Running Water Won’t Freeze: How people with advanced Parkinson’s disease experience occupation. Palliative & Supportive Care, Cambridge, 2015; 13(5): 1363-1372.

27. NASCIMENTO LR, et al. Transcranial direct current stimulation (tDCS) in addition to walking training on walking, mobility, and reduction of falls in Parkinson’s disease: study protocol for a randomized clinical trial. Trials, 2021; 22(1).

28. NOOHI S, AMIRSALARI S. History, studies and specific uses of repetitive transcranial magnetic stimulation (rTMS) in treating epilepsy. Iranian Journal of Child Neurology, 2016; 10(1): 1-8.

29. OLIVIERO A, et al. Transcranial static magnetic field stimulation of the human motor cortex. Journal of Physiology, 2011; 589(20): 4949–4958.

30. ORRU G, et al. The effect of single and repeated tDCS sessions on motor symptoms in Parkinson's disease: a systematic review. Arch Ital Biol., 2019; 157(2-3): 89-101.

31. POL F, et al. The effects of transcranial direct current stimulation on gait in patients with Parkinson's disease: a systematic review. Transl Neurodegener., 2021; 10(1): 22.

32. RIBEIRO AC, et al. Transcranial direct current stimulation associated with gait training in Parkinson's disease: A pilot randomized clinical trial. Dev Neurorehabil., 2017; 20(3): 121-128.

33. SADLER CM, et al. Transcranial direct current stimulation of supplementary motor area improves upper limb kinematics in Parkinson's disease. Clin Neurophysiol., 2021; 132(11): 2907-2915.

34. SANNA A, et al. Cerebellar continuous theta burst stimulation reduces levodopa-induced dyskinesias and decreases serum BDNF levels. Neurosci Lett., 2020; 716: 134653.

35. SIMPSON MW, MAK M. The effect of transcranial direct current stimulation on upper limb motor performance in Parkinson’s disease: a systematic review. Journal of Neurology, 2019; 267(12): 3479–88.

36. SONG IU, et al. Transcranial Direct Current Stimulation for the Treatment of Parkinson's Disease: Clinical and Regional Cerebral Blood Flow SPECT Outcomes. J Neuroimaging, 2020; 30(2): 161-164.

37. TEIVE HA, et al. Sintomas e sinais motores e não motores incomuns no estágio inicial da doença de Parkinson. Arq Neuropsiquiatr., 2016; 74(10): 781-4.

38. XIE YJ, et al. Effect of Repetitive Transcranial Magnetic Stimulation on Gait and Freezing of Gait in Parkinson Disease: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil., 2020; 101(1): 130-140.

39. YANG C, et al. Repetitive transcranial magnetic stimulation therapy for motor recovery in Parkinson's disease: A Meta-analysis. Brain Behav., 2018; 8(11): e01132.

40. WIRDEFELDT K, et al. Epidemiology and etiology of Parkinson’s disease: a review of the evidence. European Journal of Epidemiology, 2011; 26(S1): 1-58.