Immunotherapy as a possible complementary treatment for type 1 Diabetes Mellitus: a literature review

Main Article Content

Weldes Francisco da Silva Junior
Fernanda de Araújo Santana Miranda
Bárbara Luíza de Britto Cançado
Isadora Carvalho Medeiros Francescantonio
Hermínio Maurício da Rocha Sobrinho

Abstract

Objective: To describe the main mechanisms and effects of immunotherapy in the complementary treatment of Type I Diabetes Mellitus (DM1). Methods: Descriptive study of the integrative literature review type. PubMed/MEDLINE, CAPES Journals and SciELO databases were used, using the descriptors ""Diabetes Mellitus Type 1"[Mesh]", "Immunotherapy" and the Boolean operator "AND", time frame from 2010 to 2022 and selection of articles presenting full text in English, Portuguese or Spanish, excluding articles that did not fit this description. Results: The use of monoclonal antibodies, stem cell transplantation, adoptive T cells and regulatory T cells were the main immunotherapies used, achieving as a result the blockade of inflammatory cytokines, stimulation of the preservation of pancreatic beta cells, destruction of effector immune cells and increase in immunological tolerance respectively, demonstrating immunotherapy as a complementary therapy with great potential for the complementary treatment of DM1. Final considerations: There is still a lack of more in-depth studies in the literature about the different and possible mechanisms of action and long-term effects of immunotherapies for DM1.

Article Details

How to Cite
Silva JuniorW. F. da, MirandaF. de A. S., CançadoB. L. de B., FrancescantonioI. C. M., & Rocha SobrinhoH. M. da. (2022). Immunotherapy as a possible complementary treatment for type 1 Diabetes Mellitus: a literature review. Electronic Journal Collection Health, 15(11), e11230. https://doi.org/10.25248/reas.e11230.2022
Section
Revisão Bibliográfica

References

1. AMERICAN DIABETES ASSOCIATION. Classification and Diagnosis of Diabetes. Diabetes Care, 2019; 40: S11-S24.

2. ANDRADE L, et al. Terapia com células-tronco em Diabetes Mellitus. R. Ci. Med. Biol., 2012; 11: 79-85.

3. ATIKINSON MA, et al. Typo 1 diabetes. Lancet, 2014; 383: 69-82.

4. CARRERAS E, et al. The EBMT Handbook Hematopoietic Stem Cell Transplantation and Cellular Therapies. Springer Open, 2019.

5. CHATENOUD L, et al. Anti-CD3 antibody induces long-term remission of overt autoimmunity in non-obese diabetic mice. Proc Natl Acad Sci, 1994; 91: 123-7.

6. DABELEA D, et al. Prevalence of type 1 and type 2 diabetes among children and adolescents from 2001 to 2009. JAMA - J Am Med Assoc, 2014; 311: 1778–86.

7. DAIFOTIS AG, et al. Anti-CD3 clinical trials in type 1 diabetes mellitus. Clin. Immunol, 2013; 149: 268–278.

8. DAVILA ML, et al. CD19 CAR-targeted T cells induce long-term remission and B Cell Aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia. PloS One, 2013; 8: e61338.

9. DAVILA ML, et al. How do CARs work? Early insights from recent clinical studies targeting CD19. Oncoimmunology, 2012; 1: 1577-83.

10. FERREIRA LM, et al. Next-generation regulatory T cell therapy. Nat Rev Drug Discov, 2019; 18: 749-769.

11. FRUMENTO D, et al. Immunotherapy for type 1 diabetes. J Endocrinol Invest, 2017; 40: 803–14.

12. GAGLIA J, KISSLER S. Anti-CD3 antibody for the prevention of type 1 diabetes - a story of perseverance. Biochemistry, 2019; 58: 4107-4111.

13. GIACOMINI GM. Técnicas e perspectivas em imunoterapia do câncer. Saúde e Pesquisa, 2012; 5: 567-78.

14. HAGOPIAN W, et al. Teplizumab preserves C-peptide in recent-onset type 1 diabetes: two-year results from the randomized, placebo-controlled Protégé trial. Diabetes, 2013; 62: 3901–3908.

15. HEROLD KC, et al. An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes. The New England Journal of Medicine, 2019; 381: 603–613.

16. KALOS M, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med, 2011; 3: 95ra73.

17. LEVINE AG, et al. Continuous requirement for the TCR in regulatory T cell function. Nat. Immunol, 2014; 15: 1070–1078.

18. LUKAVESH AN, ZAMYATNIN AA. Viral vectors for gene therapy: current state and clinical perspectives. Biochemistry Biokhimiia, 2016; 81:700-8.

19. MÂNCIO RD, et al. Uso de imunomodulação no controle do diabetes: novas perspectivas para o tratamento dos danos causados por esta doença. Revista Multidisciplinar da Saúde, 2013; 5: 1-10.

20. MAREK-TRZONKOWSKA N, et al. Administration of CD4+CD25highCD127-regulatory T cells preserves beta-cell function in type 1 diabetes in children. Diabetes Care, 2012; 35: 1817–1820.

21. MEI HE, et al. Rationale of anti-CD19 immunotherapy: an option to target autoreactive plasma cells in autimmunity. Arthrtis Research & Therapy, 2012; 14: 1-16.

22. MESPLES A, et al. Early immunotherapy using autologous adult stem cells reversed the effect of anti-pancreatic islets in recently diagnosed type 1 diabetes mellitus: preliminary results. Medical science monitor: international medical journal of experimental and clinical research, 2013; 19: 852–857.

23. OROZCO B, ALVES LS. Diferenças do autocuidado entre pacientes com diabetes mellitus tipo 1 e 2. Psicologia, Saúde e Doenças, 2017; 18: 234-247.

24. PILGER C, ABREU AS. Diabetes mellitus na infância: repercussões no cotidiano da criança e de as famílias. Cogitare Enfermagem, 2007; 12: 494-501.

25. PLESA G, et al. TCR affinity and specificity requirements for human regulatory T-cell function. Blood, 2012; 119: 3420–3430.

26. RIGBY MR, et al. Alefacept provides sustained clinical and immunological effects in new-onset type 1 diabetes patients. J Clin Invest, 2015; 125: 3285–96.

27. RODACKI M, et al. A secreção residual do peptídeo C faz a diferença no tratamento do diabetes melitos tipo 1?. Arquivos de Endocrinologia e Metabologia, 2008; 52: 322-333.

28. SHERRY N, et al. Teplizumab for treatment of type 1 diabetes (Protégé study): 1-year results from a randomised, placebo-controlled trial. Lancet, 2011; 378: 487-97.

29. SOUSA AA, et al. Diabetes Melito tipo 1 autoimune: aspectos imunológicos. Univ Ciências da Saúde, 2016; 14(1): 53-65.

30. SPROUSE ML, et al. Cutting edge: low-affinity TCRs support regulatory T cell function in autoimmunity. J. Immunol, 2018; 200: 909–914.

31. TANG Q, et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. Immunity, 2008; 28: 687–697.

32. VAN BELLE TL, et al. Type 1 diabetes: etiology, immunology and therapeutic strategies. Physiological Reviews, 2011; 91: 79–118.

33. VOLTARELLI JC, et al. Autologous Nonmyeloablative Hematopoietic Stem Cell Transplantation in Newly Diagnosed Type 1 Diabetes Mellitus. JAMA, 2007; 14: 1568-1576.

34. VOLTARELLI JC, et al. Terapia celular no diabetes mellitus. Rev. Bras. Hematol. Hemoter, 2009; 31: 149-1

35. VOLTARELLI JC. Transplante de células-tronco hematopoiéticas no diabete melito do tipo I. Rev. Bras. Hematol. Hemoter, 2004; 26: 43-45.

36. WITT AR, et al. Marcadores imunológicos da diabetes mellitus do tipo 1 – revisão. Revista Conhecimento Online, 2011; 2: 30-44.

37. YEH WI, et al. Avidity and bystander suppressive capacity of human regulatory T cells expressing de novo autoreactive T-cell receptors in type 1 diabetes. Front. Immunol, 2017; 8: 1313.

38. ZHANG L, et al. Chimeric antigen receptor (CAR) T cells targeting a pathogenic MHC class II:peptide complex modulate the progression of autoimmune diabetes. J Autoimmun, 2019; 96: 50-58.