A expressão diferencial de microRNAs virais modula a patogenicidade da infecção
##plugins.themes.bootstrap3.article.main##
Resumo
Objetivo: Caracterizar o perfil de miRNAs virais, seus mecanismos de patogênese e descrever sua interação com o hospedeiro. Métodos: Essa pesquisa é uma revisão integrativa, as palavras-chaves foram padronizadas de acordo com os Descritores em Ciências da Saúde (DeCS), as bases de dados consultadas foram o NCBI, LILACS, BVS e SciELO. Resultados: Os miRNAs regulam negativamente a sinalização IFNγ, RIGI, suprimindo a resposta imune inata, funcionam como imunomoduladores também sendo regulados positivamente e várias vias como PI3K/Akt e ERK/MAPK mantém a patogênese. A regulação negativa da sinalização do interferon tipo I, inibindo citotoxicidade de linfócitos natural killer atenua a resposta imunológica e leva a depleção do sistema imune por essas moléculas, membros da família Let-7 podem reprimir a via de apoptose por inibição de BCL2L2 potencializando infecções. Considerações finais: Os miRNAs são movidos por amplo espectro de interações, ocasionando desregulação de vias de sinalização em processos infecciosos, no entanto, essas moléculas podem ser biomarcadores terapêuticos de interesse, auxiliando no prognóstico e diagnóstico de pacientes com infecções virais.
##plugins.themes.bootstrap3.article.details##
Copyright © | Todos os direitos reservados.
A revista detém os direitos autorais exclusivos de publicação deste artigo nos termos da lei 9610/98.
Reprodução parcial
É livre o uso de partes do texto, figuras e questionário do artigo, sendo obrigatória a citação dos autores e revista.
Reprodução total
É expressamente proibida, devendo ser autorizada pela revista.
Referências
2. ANDROULIDAKI A, et al. The Kinase Akt1 control macrophage response to lipopolisaccharide by Regulating MicroRNAs. Immunity, 2009; 31(2): 220-231.
3. BARBU MG, et al. MicroRNAs Involvement in Signaling Pathways During Viral Infection. Frontiers in Cell and Developmental Biology, 2020; 8: 143.
4. BERNIER A e SAGAN SM. The Diverse Roles of microRNAs at the Host-Virus Interface. Viruses, 2018; 10(8): 440.
5. BOUZAR AB e WILLEMS L. How HTLV-1 may subvert miRNAs for persistence and transformation. Retrovirology, 2008; 5: 101.
6. BRDOVčAK MC, et al. Herpes Simplex Virus 1 Deregulation of Host MicroRNAs. Noncoding RNA, 2018; 4(4): 33.
7. CAI W, et al. Regulatory Role of Host MicroRNAs in Flaviviruses Infection. Frontiers in Microbiology, 2022; 13: 869441.
8. ESSANDOH K e FAN G-C. Role of extracellular and intracellular microRNAs in sepsis. Biochimica Biophysica Acta (BBA) - Molecular Basis of Disease, 2013; 1842(11): 2155-2162.
9. GALLO A, et al. Viral miRNAs as Active Players and Participants in Tumorigenesis. Cancers, 2020; 12(2): 358.
10. GIUDICE A, et al. Role of Viral miRNA and Epigenetic Modifications in Epstein-Barr Virus-Associated Gastric Carcinogenesis. Oxidative Medicine and Cellular Longevity, 2016; 2016 :6021934.
11. GRUNDHOFF A e SULLIVAN CS. Virus-encoded microRNAs. Virology, 2011; 411(2): 325-343.
12. KINCAID RP e SULLIVAN CS. Virus-Encoded microRNAs: An Overview and a Look to the Future. PLoS Pathogens, 2012; 8(12): e1003018.
13. LEE I, et al. New class of microRNA targets containing simultaneous 5’-UTR and 3’-UTR interaction sites. Genome Research, 2009; 19: 1175-1183.
14. LETAFATI A, et al. Micro let-7 and viral infections: focus on mechanisms of action. Cellular & Molecular Biology Letters, 2022; 27: 14.
15. LI H, et al. MicroRNA-mediated interactions between host and hepatitis C virus. World Journal of Gastroenterology, 2016; 22(4):1487-1496.
16. LI W, et al. A KSHV microRNA enhances viral latency and induces angiogenesis by targeting GRK2 to activate the CXCR2/AKT pathway. Oncotarget, 2016a; 7(22): 32286-32305.
17. LI W, et al. The SH3BGR/STAT3 Pathway Regulates Cell Migration and Angiogenesis Induced by a Gammaherpesvirus MicroRNA. PLoS Pathogens, 2016b; 12(4): e1005605.
18. LIZASA H, et al. Role of Viral and Host microRNAs in Immune Regulation of Epstein-Barr Virus-Associated Diseases. Frontiers in Immunology, 2020; 11: 367.
19. Lu C-C, et al. MicroRNAs encoded by Kaposi’s sarcoma - associated herpesvirus regulate viral life cycle. EMBO Reports, 2010; 11(10): 784-790.
20. MA X, et al. MicroRNAs in NK-kB in signaling. Journal of Molecular Cell Biology, 2011; 3(3): 159-166.
21. MAKKOCH J, et al. Human microRNAs profiling in response to influenza A viruses (subtypes pH1N1, H3N2, and H5N1). Experimental Biology and Medicine, 2016; 241(4): 409-420.
22. MOLES R, et al. STAT1: A Novel Target of miR-150 and miR-223 Is Involved in the Proliferation of HTLV-I-Transformed and ATL Cells. Neoplasia, 2015; 17(5): 449-462.
23. MURER A, et al. MicroRNAs of Epstein-Barr Virus Attenuate T-Cell-Mediated Immune Control In Vivo. mBio, 2019; 10(1): e01941-18.
24. NAHAND JS, et al. Cell death pathways and viruses: Role of microRNAs. Molecular Therapy Nucleic Acids, 2021; 24: 487-511.
25. OURA K, et al. Molecular and Functional Roles of MicroRNAs in the Progression of Hepatocellular Carcinoma - A Review. International Journal of Molecular Sciences, 2020; 21(21): 8362.
26. PIEDADE D e AZEVEDO-PEREIRA JM. The Role of microRNAs in the Pathogenesis of Herpesvirus Infection. Viruses, 2016; 8(6)1-32.
27. QIAO J, et al. HIV-1 Vpr protein upregulated microRNA-210-5p expression to induce G2 arrest by targeting TGIF2. PLoS One, 2021; 16(12): e0261971.
28. QIN J, et al. KSHV microRNAS: Tricks of the Devil. Trends in Microbiology, 2017; 25(8): 648-661.
29. QIU J e THORLEY-LAWSON DA. EBV microRNA BART 18-5p targets MAP3K2 to facilitate persistence in vivo by inhibiting viral replication in B cells. PNAS, 2014; 111(30): 11157-11162.
30. SAMIR M, et al. MicroRNAs in the Host Response to Viral Infections of Veterinary Importance. Frontiers in Veterinary Sciences, 2016; 3: 86.
31. SKALSKY RL e CULLEN BR. Viruses, microRNAs, and Host Interactions. Annual Reviews of Microbiology, 2010; 64: 123-141.
32. SKALSKY RL, et al. The Viral and Cellular MicroRNA Targetome in Lymphoblastoid Cell Lines. PLoS Pathogens, 2012; 8(1): e1002484.
33. THOMAIDOU AC, et al. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. International Journal Molecular Sciences, 2022; 23(15): 8257.
34. TRIBOLET L, et al. MicroRNA Biomarkers for Infectious Diseases: From Basic Research to Biosensing. Frontiers in Microbiology, 2020; 11:1197.
35. VOJTECHOVA Z e TACHEZY R. The Role of miRNAs in Virus-Mediated Oncogenesis. International Journal of Molecular Sciences, 2018; 19(4):1217.
36. WENDLANDT EB, et al. The role of microRNAs miR-200b and miR-200c in TLR4 signaling and NF-kB activaction. Innate Immunity, 2012; 18(6):846-855.
37. WU J, et al. Hepatitis B surfaces antigen inhibits MICA and expression via induction of cellular miRNAs in hepatocellular carcinoma cells. Carcinogenesis, 2014; 35(2): 155-163.
38. WU W, et al. MicroRNA let-7 Suppresses Influenza A Virus Infection by Targeting RPS16 and Enhancing Type I Interferon Response. Frontiers in Cellular and Infection Microbiology, 2022; 12: 904775.
39. YIN Q, et al. Regulatory effects of lncRNAs and miRNAs on autophagy in malignant tumorigenesis. Bioscience Reports, 2018; 38(5): BSR20180516.
40. ZHANG L, et al. MicroRNAs expressed by human cytomegalovirus. Virology Journal, 2020; 17:34.