Modelo de zebrafish (Danio rerio) para intoxicação fetal por deltametrina
##plugins.themes.bootstrap3.article.main##
Resumo
Objetivo: Propor o zebrafish (Danio rerio) como um modelo animal de intoxicação fetal pela exposição a deltametrina (DM) avaliando a concentração e tempo, considerando que as primeiras 24 h deste modelo equivalem ao primeiro trimestre de desenvolvimento fetal humano. Métodos: Embriões foram expostos as concentrações 100 - 1000 µg/L (DM). Foram realizados três experimentos onde a epibolia foi avaliada a 8 h e os efeitos teratogênicos e mortalidade foram avaliados após 22 e 46 h de exposição. Resultados: Foi observado atraso na epibolia (61,41, 55,05 e 50,87%) nos grupos expostos a DM de forma dose dependente. A exposição a DM por 22 h foi suficiente para induzir efeitos teratogênicos nos embriões como edemas de pericárdio e saco vitelino e deformação de coluna e cauda. Já a exposição por 46 h também induziu os efeitos relatados acima, porem ocasionou maior mortalidade dos animais. A exposição a 1000 µg/L ocasionou a mortalidade de 100% dos animais. Conclusão: Concluímos que a concentração de 500 µg/L e 22 h de exposição produziu alterações na epibolia e efeitos teratogênicos que podem ser avaliados durante o desenvolvimento embrionário e se mostrou a melhor para ser usada em estudos futuros em pesquisa de saúde.
##plugins.themes.bootstrap3.article.details##
Copyright © | Todos os direitos reservados.
A revista detém os direitos autorais exclusivos de publicação deste artigo nos termos da lei 9610/98.
Reprodução parcial
É livre o uso de partes do texto, figuras e questionário do artigo, sendo obrigatória a citação dos autores e revista.
Reprodução total
É expressamente proibida, devendo ser autorizada pela revista.
Referências
2. ALI T, et al. Pesticide genotoxicity in cotton picking women in Pakistan evaluated using comet assay. Drug and Chemical Toxicology. 2017; 41: 213-220.
3. AWOYEMI OM, et al. Behavioral, molecular and physiological responses of embryo-larval zebrafish exposed to types I and II pyrethroids. Chemosphere,2019; 219: 526-537.
4. BALASUBRAMANIAN S, et al. Role of epigenetics in zebrafish development. Gene, 2019; 718: 144049.
5. BARS C, et al. Developmental Toxicity and Biotransformation of Two Anti-Epileptics in Zebrafish Embryos and Early Larvae. International Journal of Molecular Sciences, 2021; 22: 12696.
6. BRUCE AEE. Zebrafish epiboly: spreading thin over the yolk. Developmental Dynamics, 2016; 245.3: 244-258.
7. CADENA PG, et al. Folic acid reduces the ethanol-induced morphological and behavioral defects in embryonic and larval zebrafish (Danio rerio) as a model for fetal alcohol spectrum disorder (FASD). Reproductive Toxicology, 2020a; 96: 249-257.
8. CADENA PG, et al. Protective effects of quercetin, polydatin, and folic acid and their mixtures in a zebrafish (Danio rerio) fetal alcohol spectrum disorder model. Neurotoxicology and Teratology, 2020b; 82: 106928.
9. CANEDO A, et al. O peixe-zebra (Danio rerio) encontra a bioética: os princípios éticos dos 10Rs na pesquisa. Ciência Animal Brasileira, 2022; 23.
10. FERNÁNDEZ SF, et al. Biomonitoring of non-persistent pesticides in urine from lactating mothers: Exposure and risk assessment, Science of the Total Environment, 2020; 699: 134385.
11. FERNÁNDEZ-CRUZ T, et al. Prenatal exposure to organic pollutants in northwestern Spain using non-invasive matrices (placenta and meconium). Science of The Total Environment, 2020; 731: 138341.
12. FERNANDES Y, et al. Embryonic Alcohol Exposure Impairs the Dopaminergic System and Social Behavioral Responses in Adult Zebrafish. International Journal of Neuropsychopharmacology, 2015; 1–8.
13. HOWE K, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013; 496.7446: 498-503.
14. KIMMEL CB, et al. Stages of embryonic development of the zebrafish. Developmental dynamics, 1995; 203.3: 253-310.
15. KIM K, et al. Exposure to pesticides and the associated human health effects. Science of the Total Environment, 2017; 575: 525–535.
16. KIRLA KT, et al. Zebrafish early life stages as alternative model to study ‘designer drugs’: Concordance with mammals in response to opioids. Toxicology and Applied Pharmacology, 2021; 419: 115483.
17. LAUGERAY A, et al. In utero and lactational exposure to low-doses of the pyrethroid insecticide cypermethrin leads to neurodevelopmental defects in male mice—An ethological and transcriptomic study. PloS one, 2017; 12.10: e0184475.
18. LI M, et al. Cardiovascular toxicity and anxiety-like behavior induced by deltamethrin in zebrafish (Danio rerio) larvae. Chemosphere, 2019; 219: 155-164.
19. LIU X, et al. Developmental toxicity and neurotoxicity of synthetic organic insecticides in zebrafish (Danio rerio): A comparative study of deltamethrin, acephate, and thiamethoxam. Chemosphere, 2018; 199: 16-25.
20. LUO H, et al. Long term perinatal deltamethrin exposure alters electrophysiological properties of embryonic ventricular cardiomyocyte. Current Medical Science, 2019; 39.1: 21-27.
21. MACRAE CA e PETERSON RT. Zebrafish as tools for drug discovery. Nature Reviews Drug Discovery, 2015; 14: 721–731.
22. MORLEY RH, et al. A gene regulatory network directed by zebrafish No tail accounts for its roles in mesoderm formation. Proceedings of the National Academy of Sciences, 2009; 106.10: 3829-3834.
23. OCDE 236. OCDE GUIDELINES FOR THE TESTING OF CHEMICALS. OCDE. 2013; 236, p. 1-22.
24. PALMA DCA, et al. Simultaneous determination of different classes of pesticides in breast milk by solid-phase dispersion and GC/ECD. Journal of the Brazilian Chemical Society, 2014; 25: 1419-1430.
25. PARLAK V. Evaluation of apoptosis, oxidative stress responses, AChE activity and body malformations in zebrafish (Danio rerio) embryos exposed to deltamethrin. Chemosphere, 2018; 207: 397-403.
26. PETROVICI A, et al. Toxicity of deltamethrin to zebrafish gonads revealed by cellular biomarkers. Journal of marine science and engineering, 2020; 8.2: 73.
27. RANJANI TS, et al. Phenotypic and transcriptomic changes in zebrafish (Danio rerio) embryos/larvae following cypermethrin exposure. Chemosphere, 2020; 249: 126148.
28. SABARWAL A. et al. Hazardous effects of chemical pesticides on human health–Cancer and other associated disorders. Environmental Toxicology and Pharmacology, 2018; 63: 103–114.
29. SARASAMMA S, et al. Zebrafish: A Premier Vertebrate Model for Biomedical Research in Indian Scenario, ZEBRAFISH, 2017.
30. SCHULTE-MERKER S, et al. no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development, 1994; 120.4: 1009-1015.
31. SHABNAM KR e PHILIP GH. Developmental toxicity of deltamethrin and 3-Phenoxybenzoic acid in embryo-larval stages of zebrafish (Danio rerio). Toxicology Mechanisms and Methods, 2018; 28: 415-422.
32. SILVA MCG, et al. The complexation of steroid hormones into cyclodextrin alters the toxic effects on the biological parameters of zebrafish (Danio rerio). Chemosphere, 2019; 214: 330-340.
33. WESTERFIELD M. THE ZEBRAFISH BOOK, 5th Edition. Oregon: Eugene, 2000.