Modelo de zebrafish (Danio rerio) para intoxicação fetal por deltametrina

##plugins.themes.bootstrap3.article.main##

Jadson Freitas da Silva
Paula Raíza Alves Cavalcante
Renatta Priscilla Ferreira Silva
Andressa Raphaely de Lima Silva
Sérgio Clementino da Costa
Matheus Victor Viana de Melo
Renata Meireles Oliveira Padilha
Samara da Silva Gomes
Amanda Rodrigues dos Santos Magnabosco
Pabyton Gonçalves Cadena

Resumo

Objetivo: Propor o zebrafish (Danio rerio) como um modelo animal de intoxicação fetal pela exposição a deltametrina (DM) avaliando a concentração e tempo, considerando que as primeiras 24 h deste modelo equivalem ao primeiro trimestre de desenvolvimento fetal humano. Métodos: Embriões foram expostos as concentrações 100 - 1000 µg/L (DM). Foram realizados três experimentos onde a epibolia foi avaliada a 8 h e os efeitos teratogênicos e mortalidade foram avaliados após 22 e 46 h de exposição. Resultados: Foi observado atraso na epibolia (61,41, 55,05 e 50,87%) nos grupos expostos a DM de forma dose dependente. A exposição a DM por 22 h foi suficiente para induzir efeitos teratogênicos nos embriões como edemas de pericárdio e saco vitelino e deformação de coluna e cauda. Já a exposição por 46 h também induziu os efeitos relatados acima, porem ocasionou maior mortalidade dos animais. A exposição a 1000 µg/L ocasionou a mortalidade de 100% dos animais. Conclusão: Concluímos que a concentração de 500 µg/L e 22 h de exposição produziu alterações na epibolia e efeitos teratogênicos que podem ser avaliados durante o desenvolvimento embrionário e se mostrou a melhor para ser usada em estudos futuros em pesquisa de saúde.

##plugins.themes.bootstrap3.article.details##

Como Citar
SilvaJ. F. da, CavalcanteP. R. A., SilvaR. P. F., SilvaA. R. de L., CostaS. C. da, MeloM. V. V. de, PadilhaR. M. O., GomesS. da S., MagnaboscoA. R. dos S., & CadenaP. G. (2023). Modelo de zebrafish (Danio rerio) para intoxicação fetal por deltametrina. Revista Eletrônica Acervo Saúde, 23(4), e12357. https://doi.org/10.25248/reas.e12357.2023
Seção
Artigos Originais

Referências

1. AFATA TN, et al. Evaluating the Level of Pesticides in the Blood of Small-Scale Farmers and Its Associated Risk Factors in Western Ethiopia. Environmental Health Insights. 2021; 15.

2. ALI T, et al. Pesticide genotoxicity in cotton picking women in Pakistan evaluated using comet assay. Drug and Chemical Toxicology. 2017; 41: 213-220.

3. AWOYEMI OM, et al. Behavioral, molecular and physiological responses of embryo-larval zebrafish exposed to types I and II pyrethroids. Chemosphere,2019; 219: 526-537.

4. BALASUBRAMANIAN S, et al. Role of epigenetics in zebrafish development. Gene, 2019; 718: 144049.

5. BARS C, et al. Developmental Toxicity and Biotransformation of Two Anti-Epileptics in Zebrafish Embryos and Early Larvae. International Journal of Molecular Sciences, 2021; 22: 12696.

6. BRUCE AEE. Zebrafish epiboly: spreading thin over the yolk. Developmental Dynamics, 2016; 245.3: 244-258.

7. CADENA PG, et al. Folic acid reduces the ethanol-induced morphological and behavioral defects in embryonic and larval zebrafish (Danio rerio) as a model for fetal alcohol spectrum disorder (FASD). Reproductive Toxicology, 2020a; 96: 249-257.

8. CADENA PG, et al. Protective effects of quercetin, polydatin, and folic acid and their mixtures in a zebrafish (Danio rerio) fetal alcohol spectrum disorder model. Neurotoxicology and Teratology, 2020b; 82: 106928.

9. CANEDO A, et al. O peixe-zebra (Danio rerio) encontra a bioética: os princípios éticos dos 10Rs na pesquisa. Ciência Animal Brasileira, 2022; 23.

10. FERNÁNDEZ SF, et al. Biomonitoring of non-persistent pesticides in urine from lactating mothers: Exposure and risk assessment, Science of the Total Environment, 2020; 699: 134385.

11. FERNÁNDEZ-CRUZ T, et al. Prenatal exposure to organic pollutants in northwestern Spain using non-invasive matrices (placenta and meconium). Science of The Total Environment, 2020; 731: 138341.

12. FERNANDES Y, et al. Embryonic Alcohol Exposure Impairs the Dopaminergic System and Social Behavioral Responses in Adult Zebrafish. International Journal of Neuropsychopharmacology, 2015; 1–8.

13. HOWE K, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature, 2013; 496.7446: 498-503.

14. KIMMEL CB, et al. Stages of embryonic development of the zebrafish. Developmental dynamics, 1995; 203.3: 253-310.

15. KIM K, et al. Exposure to pesticides and the associated human health effects. Science of the Total Environment, 2017; 575: 525–535.

16. KIRLA KT, et al. Zebrafish early life stages as alternative model to study ‘designer drugs’: Concordance with mammals in response to opioids. Toxicology and Applied Pharmacology, 2021; 419: 115483.

17. LAUGERAY A, et al. In utero and lactational exposure to low-doses of the pyrethroid insecticide cypermethrin leads to neurodevelopmental defects in male mice—An ethological and transcriptomic study. PloS one, 2017; 12.10: e0184475.

18. LI M, et al. Cardiovascular toxicity and anxiety-like behavior induced by deltamethrin in zebrafish (Danio rerio) larvae. Chemosphere, 2019; 219: 155-164.

19. LIU X, et al. Developmental toxicity and neurotoxicity of synthetic organic insecticides in zebrafish (Danio rerio): A comparative study of deltamethrin, acephate, and thiamethoxam. Chemosphere, 2018; 199: 16-25.

20. LUO H, et al. Long term perinatal deltamethrin exposure alters electrophysiological properties of embryonic ventricular cardiomyocyte. Current Medical Science, 2019; 39.1: 21-27.

21. MACRAE CA e PETERSON RT. Zebrafish as tools for drug discovery. Nature Reviews Drug Discovery, 2015; 14: 721–731.

22. MORLEY RH, et al. A gene regulatory network directed by zebrafish No tail accounts for its roles in mesoderm formation. Proceedings of the National Academy of Sciences, 2009; 106.10: 3829-3834.

23. OCDE 236. OCDE GUIDELINES FOR THE TESTING OF CHEMICALS. OCDE. 2013; 236, p. 1-22.

24. PALMA DCA, et al. Simultaneous determination of different classes of pesticides in breast milk by solid-phase dispersion and GC/ECD. Journal of the Brazilian Chemical Society, 2014; 25: 1419-1430.

25. PARLAK V. Evaluation of apoptosis, oxidative stress responses, AChE activity and body malformations in zebrafish (Danio rerio) embryos exposed to deltamethrin. Chemosphere, 2018; 207: 397-403.

26. PETROVICI A, et al. Toxicity of deltamethrin to zebrafish gonads revealed by cellular biomarkers. Journal of marine science and engineering, 2020; 8.2: 73.

27. RANJANI TS, et al. Phenotypic and transcriptomic changes in zebrafish (Danio rerio) embryos/larvae following cypermethrin exposure. Chemosphere, 2020; 249: 126148.

28. SABARWAL A. et al. Hazardous effects of chemical pesticides on human health–Cancer and other associated disorders. Environmental Toxicology and Pharmacology, 2018; 63: 103–114.

29. SARASAMMA S, et al. Zebrafish: A Premier Vertebrate Model for Biomedical Research in Indian Scenario, ZEBRAFISH, 2017.

30. SCHULTE-MERKER S, et al. no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development, 1994; 120.4: 1009-1015.

31. SHABNAM KR e PHILIP GH. Developmental toxicity of deltamethrin and 3-Phenoxybenzoic acid in embryo-larval stages of zebrafish (Danio rerio). Toxicology Mechanisms and Methods, 2018; 28: 415-422.

32. SILVA MCG, et al. The complexation of steroid hormones into cyclodextrin alters the toxic effects on the biological parameters of zebrafish (Danio rerio). Chemosphere, 2019; 214: 330-340.

33. WESTERFIELD M. THE ZEBRAFISH BOOK, 5th Edition. Oregon: Eugene, 2000.