Principais tipos de coronavírus em humanos, seu diagnóstico e a necessidade de manutenção da vigilância à Covid-19
##plugins.themes.bootstrap3.article.main##
Resumo
Objetivo: Descrever os principais tipos de coronavírus em humanos relatados na literatura e seu diagnóstico, a fim de fornecer orientações confiáveis sobre este tema de grande importância de saúde pública no contexto atual. Revisão bibliográfica: Os coronavírus vêm sendo estudados desde 1930 em episódios de infecções entre animais. O primeiro caso em humano foi em 1960. Contudo, os vírus com repercussão clínica em humanos foram o SARS-CoV, MERS-CoV e SARS-CoV-2. A covid-19 foi a mais agressiva, sendo responsável por milhões de mortes no mundo todo. Esta deixou rastros de prejuízos irreparáveis de ordem política, social, econômica e de saúde pública, amenizada apenas após a vacinação da população. Apesar de avanços no tratamento, na vacinação e nas medidas de biossegurança, todos os métodos de prevenção à doença continuam sendo baseados no diagnóstico e na vigilância epidemiológica. O padrão ouro no diagnóstico configura-se no RT-PCR. Considerações finais: Os coronavírus têm chamado a atenção de cientistas e leigos. Pesquisa-se sobre os coronavírus há décadas, porém com a ameaça à saúde humana, aumentou o aprofundamento de pesquisas sobre o tema, apesar de todo o avanço ainda é necessário, principalmente neste momento, o avanço no diagnóstico precoce e o acompanhamento dos tipos de SARS-CoV-2.
##plugins.themes.bootstrap3.article.details##
Copyright © | Todos os direitos reservados.
A revista detém os direitos autorais exclusivos de publicação deste artigo nos termos da lei 9610/98.
Reprodução parcial
É livre o uso de partes do texto, figuras e questionário do artigo, sendo obrigatória a citação dos autores e revista.
Reprodução total
É expressamente proibida, devendo ser autorizada pela revista.
Referências
2. ANDERSEN KG, et al. A Origem Proximal do SARS-CoV-2. Nature Medicine, Inglaterra, 2020; 26: 450-452.
3. ARIAS LM. Decoding molnupiravir-induced mutagenesis in SARS-CoV-2. J. Biol. Chem., 2021.
4. BUTLER CC, et al. Molnupiravir plus usual care versus usual care alone as early treatment for adults with COVID-19 at increased risk of adverse outcomes (PANORAMIC): an open-label, platform-adaptive randomised controlled trial. Lancet., 2023; 401(10373): 281-293.
5. CORONAVIRIDAE STUDY GROUP OF THE INTERNATIONAL COMMITTEE ON TAXONOMY OF VIRUSES - CSG. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 2020: 5: 536–544.
6. DHAMA K, et al. Global emerging Omicron variant of SARS-CoV-2: Impacts, challenges and strategies. J Infect Public Health, 2023; 16(1): 4-14.
7. DREXLER HL, et al. Revealing the processing dynamics of nascent RNA with nano-COP. Nat Protoc, 2021; 16: 1343–1375.
8. DROSTEN C, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. The New England journal of medicine, 2003; 348(20): 1967–1976.
9. ENJUANES L, et al. Encyclopedia of Virology, 2008; 419–30.
10. EZHILAN M, et al. SARS-CoV, MERS-CoV and SARS-CoV-2: A Diagnostic Challenge. Measurement (Lond), 2021; 168.
11. FERNANDES JL. Covid-19 no Brasil: Aprendendo a Andar no Escuro sem Deixar Nada para Trás. Arquivos Brasileiros de Cardiologia, v. 114, n. Arq. Bras. Cardiol., 2020; 114(6).
12. FORCHETTE L, et al. A Comprehensive Review of Virology, Vaccines, Variants, and COVID-19 Therapeutics. Current Medical Science, 2021; 41: 1037-1051.
13. FORNI G, et al. COVID-19 vaccines: where we stand and challenges ahead. Cell Death Differ, 2021; 28: 626–639.
14. GIOVANETTI M, et al. Evolution patterns of SARS-CoV-2: Snapshot on its genome variants. Biochem Biophys Res Commun, 2021; 29(538): 88-91.
15. GORBALENYA AE, et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbioly, 2020.
16. HATMAL MM, et al. Comprehensive structural and molecular comparison of SARS-CoV-2, SARS-CoV, and MERS-CoV spike proteins and their interactions with ACE2. Cells [Internet], 2020; 9(12): 1-37.
17. JACKSON CB, et al. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol, 2022.
18. KHALID S, et al. Current understanding of an Emerging Coronavirus using in silico approach: Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Braz J Biol [Internet], 2023; 83.
19. KIND L e CORDEIRO R. Narrativas sobre a morte: a gripe espanhola e a covid-19 no Brasil. Psicol Soc [Internet]. 2020; 32.
20. KNIPE DM e HOWLEY P. Fields Virology. Sixth Edition ed. 2013.
21. KSIAZEK TG, et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med., 2003; 1953 – 1966.
22. LIPPI G, et al. Updated picture of SARS-CoV-2 variants and mutations. Diagnosis, 2021; 9(1): 11-17.
23. MALIK YA. Properties of Coronavirus and SARS-CoV-2. Malays J Pathol., 2020.
24. MANOCHA, S et al. Severe acute respiratory syndrome (SARS): an intensive care perspective. Crit Care Med, 2003; 31: 11.
25. MOHAMADIAN M, et al. COVID-19: Virology, biology and novel laboratory diagnosis. J Gene Med., 2021.
26. NAJJAR-DEBBINY R, et al. “Effectiveness of Paxlovid in Reducing Severe Coronavirus Disease 2019 and Mortality in High-Risk Patients.” Clinical infectious diseases: an official publication of the Infectious Diseases. Society of America., 2023; e342-e349.
27. NORMILE D. China is flying blind as the pandemic rages. Science, 2023; 379(6627): 11-12.
28. OMS, 2023. Global research on coronavirus disease (COVID-19). World Health Organization, 2020. Disponível em: https://www. who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov. Acessado em: 2 de janeiro de 2023.
29. PARRA-LUCARES A, et al. 2022. Emergence of SARS-CoV-2 Variants in the World: How Could This Happen? Life, 2022; 12(2): 194.
30. PEIRIS JSM, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. The Lancet, 2003; 361: 1319-1325.
31. RAMADAN N e SHAIB H. Middle East respiratory syndrome coronavirus (MERS-CoV): A review. Germs, 2019.
32. SNIJDER EJ, et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol., 2003: 331-991.
33. WANG Q, et al. Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants. Cell., 2023; 186(2): 279-286.
34. WIT E, et al. SARS and MERS: insights into emerging coronaviruses. Nature Reviews Microbiology, 2016; 14(08): 523-534.
35. WOO PC, et al. Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med (Maywood), 2009.
36. WU Z e McGOOGAN JM. Characterístics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China. JAMA, 2020; 323(13): 1239-1242.
37. YANG H e RAO Z. Structural biology of SARS-CoV-2 and implications for therapeutic development. Nat Rev Microbiol, 2021.
38. ZHOU F, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet, 2020; 395(10229): 1054-1062.
39. ZHOU Z, et al. Role of COVID-19 Vaccines in SARS-CoV-2 Variants. Front Immunol., 2022; 20(13).
40. ZHU N, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New england jornal of medicine, 2019.
41. ZHU Z, et al. From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res., 2020; 21(1): 224.