O fluxo de trabalho e a aplicação da impressão 3D na odontologia
##plugins.themes.bootstrap3.article.main##
Resumo
Objetivo: Discorrer sobre o fluxo digital na odontologia com foco nos sistemas de impressão 3D, tipos de materiais utilizados e sua aplicabilidade na clínica odontológica. Revisão bibliográfica: De acordo com a literatura, o fluxo de trabalho digital na Odontologia por meio do projeto auxiliado por computador/fabricação auxiliada por computador (CAD/CAM) ocorre de forma segmentada e sua aplicabilidade está presente em todas as áreas da Odontologia. As principais impressoras utilizadas são do tipo: Estereolitografia (SLA), Processamento de luz digital (DLP), Visor de cristal líquido (LCD) e Modelagem por deposição fundida (FDM). As propriedades das peças produzidas por meio da impressão 3D, tem se mostrado similar ou superior às produzidas convencionalmente. As impressoras DLP e SLA são mais presentes na rotina clínica, o tipo de material prevalentemente utilizado são os polímeros e suas principais aplicações são: coroas provisórias, modelos de trabalho, guias cirúrgicos, alinhadores e placas miorrelaxantes. Considerações finais: O fluxo de trabalho com a aplicação da impressão 3D apresenta diversas vantagens para a clínica odontológica, melhorando a comunicação com o paciente, reduzindo o número de sessões clínicas, previsibilidade do caso e melhora da técnica.
##plugins.themes.bootstrap3.article.details##
Copyright © | Todos os direitos reservados.
A revista detém os direitos autorais exclusivos de publicação deste artigo nos termos da lei 9610/98.
Reprodução parcial
É livre o uso de partes do texto, figuras e questionário do artigo, sendo obrigatória a citação dos autores e revista.
Reprodução total
É expressamente proibida, devendo ser autorizada pela revista.
Referências
2. BROWN G, et al. Accuracy of 3-dimensional printed dental models reconstructed from digital intraoral impressions. Am J Orthod Dentofacial Orthop, 2018; 5: 733-739.
3. CAMARDELLA L, et al. Accuracy of stereolithographically printed digital models compared to plaster models. J Orofac Orthop, 2017; 5: 394-402.
4. CHEN S. et al. Comparison of flexural properties and cytotoxicity of interim materials printed from mono-LCD and DLP 3D printers. J Prosthet Dent, 2021; 5: 703-708.
5. CHEN S. et al. A Study of 3D-Printable Reinforced Composite Resin: PMMA Modified with Silver Nanoparticles Loaded Cellulose Nanocrystal. Materials (Basel), 2018; 12: 2444.
6. CHERNYSHIKHIN S, et al. The Study on Resolution Factors of LPBF Technology for Manufacturing Superelastic NiTi Endodontic Files. Materials (Basel), 2022; 19: 6556.
7. DEEB G, et al. How Accurate Are Implant Surgical Guides Produced With Desktop Stereolithographic 3-Dimentional Printers? J Oral Maxillofac Surg, 2017; 12: 2559.
8. DEHURTEVENT M, et al. Stereolithography: A new method for processing dental ceramics by additive computer-aided manufacturing. Dent Mater, 2017; 5: 477-485.
9. DELLA BONA A, et al. 3D printing restorative materials using a stereolithographic technique: a systematic review. Dent Mater, 2021; 2: 336-350.
10. DIETRICH C, et al. A validation study of reconstructed rapid prototyping models produced by two technologies. Angle Orthod. 2017; 5: 782-787.
11. GRECO G, et al. Accuracy of 3-dimensional printing of dental casts: A proposal for quality standardization. J Prosthet Dent, 2022; 6: 899-910.
12. GRUBER K, et al. Evaluation of Inconel 718 Metallic Powder to Optimize the Reuse of Powder and to Improve the Performance and Sustainability of the Laser Powder Bed Fusion (LPBF) Process. Materials (Basel), 2021; 6: 1538.
13. JIN S, et al. Accuracy (trueness and precision) of dental models fabricated using additive manufacturing methods. Int J Comput Den, 2018; 2: 107-113.
14. KESSLER A, et al. Three-body wear of 3D printed temporary materials. Dental Materials, 2019; 12: 1805-1812.
15. KONIECZNY B, et al. Challenges of Co-Cr Alloy Additive Manufacturing Methods in Dentistry-The Current State of Knowledge (Systematic Review). Materials (Basel), 2020; 16: 3524.
16. LIU Y, et al. Accuracy of multi-implant impressions using 3D-printing custom trays and splinting versus conventional techniques for complete arches. Int J Oral Maxillofac Implants, 2019; 4: 1007–1014.
17. MOON W, et al. Dimensional Accuracy Evaluation of Temporary Dental Restorations with Different 3D Printing Systems. Materials (Basel), 2021; 6: 1487.
18. MUNOZ S, et al. Comparison of margin discrepancy of complete gold crowns fabricated using printed, milled, and conventional hand-waxed patterns. J Prosthet Dent, 2017; 1: 89-94.
19. OBEROI G, et al. 3D Printing-Encompassing the Facets of Dentistry. Front Bioeng Biotechnol, 2018; 6: 172.
20. OSMAN R, et al. Build Angle: Does It Influence the Accuracy of 3D-Printed Dental Restorations Using Digital Light-Processing Technology? Int J Prosthodont, 2017; 2: 182-188.
21. REBONG R, et al. Accuracy of three-dimensional dental resin models created by fused deposition modeling, stereolithography, and Polyjet prototype technologies: A comparative study. Angle Orthod, 2018; 3: 363-369.
22. REYMUS M, et al. 3D-printed material for temporary restorations: impact of print layer thickness and post-curing method on degree of conversion. Int J Comput Dent, 2019; 3: 231-237.
23. RIDER P. et al. Additive Manufacturing for Guided Bone Regeneration: A Perspective for Alveolar Ridge Augmentation. Int J Mol Sci, 2018; 11: 3308.
24. RYU J, et al. Marginal and internal fit of 3D printed provisional crowns according to build directions. J Adv Prosthodont, 2020; 4: 225-232.
25. TAHAYERI A, et al. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater, 2018; 2: 192-200.
26. TAO O, et al. The Applications of 3D Printing for Craniofacial Tissue Engineering. Micromachines (Basel), 2019; 7: 480.
27. TAS H, et al. Evaluation of the accuracy of dental casts manufactured with 3D printing technique in the All-on-4 treatment concept. J Adv Prosthodont, 2022; 6: 379-387.
28. TIAN Y, et al. A Review of 3D Printing in Dentistry: Technologies, Affecting Factors, and Applications. Scanning, 2021; 9950131.
29. TSOLAKIS I, et al. Comparison in Terms of Accuracy between DLP and LCD Printing Technology for Dental Model Printing. Dent J (Basel), 2022; 10: 181.
30. TZENG J. et al. Mechanical Properties and Biocompatibility of Urethane Acrylate-Based 3D-Printed Denture Base Resin. Polymers (Basel), 2021; 5: 822.
31. WANG W, et al. Trueness analysis of zirconia crowns fabricated with 3-dimensional printing. J Prosthet Dent, 2019; 2: 285-291.