Modelos animais para infecção experimental pelo vírus Zika: uma revisão sistemática

##plugins.themes.bootstrap3.article.main##

Derick Mendes Bandeira
Ana Luisa Teixeira de Almeida
Gabriela Cardoso Caldas
Debora Ferreira Barreto-Vieira

Resumo

Objetivo: Investigar na literatura modelos animais utilizados para pesquisa com o vírus Zika em que haja a possibilidade de quantificação de carga viral e análises histopatológicas. Métodos: Trata-se de uma revisão sistemática redigida de acordo com as diretrizes do método PRISMA (2020). Os autores realizaram a busca inicial de artigos nas plataformas PubMed, Embase, Google Acadêmico, LILACS e Scielo. Resultados: Foram encontrados inicialmente 735 artigos, dos quais 27 foram incluídos após avaliação pelos critérios de inclusão e exclusão. Camundongos e primatas não-humanos foram as espécies mais utilizadas (88,89% dos estudos). A cepa viral mais frequente foi a PRVABC59 (Porto Rico, 2015) e, em 77,78% dos estudos, o vírus foi inoculado por via subcutânea. Entre os sinais clínicos mais reportados estão a conjuntivite/secreção ocular, paralisia dos membros inferiores, letargia e postura arqueada. As análises histopatológicas foram feitas principalmente em cérebro e presença de infiltrado inflamatório e degeneração celular foram as alterações mais comuns. Considerações finais: Todos os modelos animais analisados apresentaram manifestações clínicas relevantes da infecção pelo vírus Zika. No entanto, a maior parte dos estudos investiga danos cerebrais, não caracterizando os danos histopatológicos em outros órgãos. Além disso, considerando a ampla biodiversidade de espécies, novos modelos animais podem ser investigados.  

##plugins.themes.bootstrap3.article.details##

Como Citar
BandeiraD. M., AlmeidaA. L. T. de, CaldasG. C., & Barreto-VieiraD. F. (2023). Modelos animais para infecção experimental pelo vírus Zika: uma revisão sistemática. Revista Eletrônica Acervo Saúde, 23(5), e13209. https://doi.org/10.25248/reas.e13209.2023
Seção
Revisão Bibliográfica

Referências

1. ALIOTA MT, et al. Characterization of Lethal Zika Virus Infection in AG129 Mice. PLoS Negl Trop Dis., 2016; 10(4): e0004682.

2. BELTRÁN-SILVA SL, et al. Clinical and differential diagnosis: Dengue, chikungunya and Zika. Revista Médica del Hospital General de México, 2018; 81(3): 146-153.

3. BRANCHE E, et al. Human Polyclonal Antibodies Prevent Lethal Zika Virus Infection in Mice. Sci Rep., 2019; 9(1): 9857.

4. BRASIL P, et al. Zika virus infection in pregnant women in Rio de Janeiro. New England Journal of Medicine, 2016; 375(24): 2321-2334.

5. CAINE EA, et al. Zika Virus Causes Acute Infection and Inflammation in the Ovary of Mice Without Apparent Defects in Fertility. J Infect Dis., 2019; 220(12): 1904-1914.

6. CARDONA-OSPINA JA, et al. Fatal Zika virus infection in the Americas: A systematic review. International journal of infectious diseases, 2019; 88: 49-59.

7. CHIU CY, et al. Experimental Zika Virus Inoculation in a New World Monkey Model Reproduces Key Features of the Human Infection. Sci Rep., 2017; 7(1): 17126.

8. DARBELLAY J, et al. Zika Virus Causes Persistent Infection in Porcine Conceptuses and may Impair Health in Offspring. EBioMedicine, 2017; 25: 73-86.

9. DE LA VEGA MA, et al. Zika-Induced Male Infertility in Mice Is Potentially Reversible and Preventable by Deoxyribonucleic Acid Immunization. J Infect Dis., 2019; 219(3): 365-374.

10. DICK GW, et al. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg., 1952; 46(5): 509-20.

11. DOWALL SD, et al. A Susceptible Mouse Model for Zika Virus Infection. PLoS Negl Trop Dis., 2016; 10(5): e0004658.

12. DOWALL SD, et al. Lineage-dependent differences in the disease progression of Zika virus infection in type-I interferon receptor knockout (A129) mice. PLoS Negl Trop Dis., 2017; 11(7): e0005704.

13. FREITAS DA, et al. Congenital Zika syndrome: A systematic review. PLoS One, 2020; 15(12): e0242367.

14. HIRSCH AJ, et al. Zika virus infection in pregnant rhesus macaques causes placental dysfunction and immunopathology. Nat Commun., 2018; 9(1): 263.

15. HOOIJMANS CR, et al. SYRCLE's risk of bias tool for animal studies. BMC Med Res Methodol., 2014; 14: 43.

16. ICTV. Genus: Flavivirus. Disponível em: https://ictv.global/taxonomy/taxondetails?taxnode_id=202103123. Acessado em: 4 de abril de 2023.

17. IRELAND DDC, et al. Long-term persistence of infectious Zika virus: Inflammation and behavioral sequela in mice. PLoS Pathog., 2020; 16(12): e1008689.

18. JULANDER JG, et al. Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model. Antiviral Res., 2017; 137: 14-22.

19. KAWIECKI AB, et al. Tissue tropisms, infection kinetics, histologic lesions, and antibody response of the MR766 strain of Zika virus in a murine model. Virol J., 2017; 14(1): 82.

20. LI S, et al. Zika Virus Fatally Infects Wild Type Neonatal Mice and Replicates in Central Nervous System. Viruses, 2018; 10(1): 49.

21. LI XF, et al. Characterization of a 2016 Clinical Isolate of Zika Virus in Non-human Primates. EBioMedicine, 2016; 12: 170-177.

22. MALMLOV A, et al. Experimental Zika virus infection of Jamaican fruit bats (Artibeus jamaicensis) and possible entry of virus into brain via activated microglial cells. PLoS Negl Tr Dis., 2019; 13(2): e0007071.

23. MALTA JM, et al. Guillain-Barré syndrome and other neurological manifestations possibly related to Zika virus infection in municipalities from Bahia, Brazil, 2015. Epidemiol Serv Saude, 2017; 26(1): 9-18.

24. MARTINOT AJ, et al. Fetal Neuropathology in Zika Virus-Infected Pregnant Female Rhesus Monkeys. Cell, 2018; 173(5): 1111-1122.e10.

25. MAVIGNER M, et al. Postnatal Zika virus infection is associated with persistent abnormalities in brain structure, function, and behavior in infant macaques. Sci Transl Med., 2018; 10(435): eaao6975.

26. MINER JJ, et al. Zika Virus Infection in Mice Causes Panuveitis with Shedding of Virus in Tears. Cell Rep., 2016; 16(12): 3208-3218.

27. MUSSO D, et al. Potential for Zika virus transmission through blood transfusion demonstrated during an outbreak in French Polynesia, 2014; 19(14): 20761.

28. PAGE MJ, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. International journal of surgery, 2021; 88: 105906.

29. PANGANIBAN AT, et al. A Zika virus primary isolate induces neuroinflammation, compromises the blood-brain barrier and upregulates CXCL12 in adult macaques. Brain Pathol., 2020; 30(6): 1017-1027.

30. PEREGRINE J, et al. Zika Virus Infection, Reproductive Organ Targeting, and Semen Transmission in the Male Olive Baboon. J Virol., 2019; 94(1): e01434-19.

31. SCHULTZ V, et al. Oligodendrocytes are susceptible to Zika virus infection in a mouse model of perinatal exposure: Implications for CNS complications. Glia, 2021; 69(8): 2023-2036.

32. SLENCZKA W. Zika Virus Disease. Microbiol Spectr., 2016; 4(3).

33. SNYDER-KELLER A, et al. Brain Iron Accumulation and the Formation of Calcifications After Developmental Zika Virus Infection. J Neuropathol Exp Neurol., 2020; 79(7): 767-776.

34. SNYDER-KELLER A, et al. Mouse Strain and Sex-Dependent Differences in Long-term Behavioral Abnormalities and Neuropathologies after Developmental Zika Infection. J Neurosci., 2019; 39(27): 5393-5403.

35. WEN Z, et al. How does Zika virus cause microcephaly? Genes Dev., 2017; 31(9): 849-61.

36. WU YH, et al. ICR suckling mouse model of Zika virus infection for disease modeling and drug validation. PLoS Negl Trop Dis., 2018;12(10): e0006848.

37. YU J, et al. Effective Suckling C57BL/6, Kunming, and BALB/c Mouse Models with Remarkable Neurological Manifestation for Zika Virus Infection. Viruses, 2017; 9(7): 165.

38. ZHANG NN, et al. Zika Virus Infection in Tupaia belangeri Causes Dermatological Manifestations and Confers Protection against Secondary Infection. J Virol., 2019; 93(8): e01982-18.

39. ZHENG B, et al. Testosterone protects mice against zika virus infection and suppresses the inflammatory response in the brain. Iscience, 2022; 25(11): 105300.

40. ZMURKO J, et al. The Viral Polymerase Inhibitor 7-Deaza-2'-C-Methyladenosine Is a Potent Inhibitor of In Vitro Zika Virus Replication and Delays Disease Progression in a Robust Mouse Infection Model. PLoS Negl Trop Dis., 2016; 10(5): e0004695.