Estratégias de engenharia de tecidos com células-tronco para cicatrização de feridas crônicas
##plugins.themes.bootstrap3.article.main##
Resumo
Objetivo: Analisar as evidências científicas acerca das estratégias de engenharia de tecidos com células-tronco para a cicatrização de feridas crônicas. Métodos: Trata-se de uma revisão integrativa, realizada nas bases de dados EMBASE, PubMed, Scopus e Web of Science, por meio dos seguintes descritores: “mesenchymal stem cells”, “adult stem cells”, “embryonic stem cells”, “erythroid precursor cells”, “stem cell therapies”, “chronic wounds” e “wounds and injuries”. Foram incluídos estudos publicados entre 2018 a 2023 que exploravam terapias com células-tronco, seja como tratamento principal ou coadjuvante em pacientes humanos. Resultados: Sete artigos compuseram a amostra final deste estudo, com maior frequência de ensaios clínicos randomizados (n: 02). Os resultados indicam que as terapias com células-tronco, especialmente as derivadas de tecido adiposo, desempenham um papel significativo na cicatrização de feridas crônicas. Estas abordagens não só aceleram a regeneração da pele, mas também apresentam uma notável segurança, evidenciada pela ausência de efeitos colaterais ou complicações significativas. Considerações finais: Os estudos nesta revisão integrativa destacam o potencial da engenharia de tecidos com células-tronco para a cicatrização de feridas crônicas. Apesar dos resultados promissores, desafios em padronização e pesquisa persistem, e futuras investigações são essenciais para consolidar estas estratégias.
##plugins.themes.bootstrap3.article.details##
Copyright © | Todos os direitos reservados.
A revista detém os direitos autorais exclusivos de publicação deste artigo nos termos da lei 9610/98.
Reprodução parcial
É livre o uso de partes do texto, figuras e questionário do artigo, sendo obrigatória a citação dos autores e revista.
Reprodução total
É expressamente proibida, devendo ser autorizada pela revista.
Referências
2. BRASIL. Ministério da Saúde (MS). Lei no 9.610, de 19 de fevereiro de 1998, que altera, atualiza e consolida a legislação sobre direitos autorais e dá outras providências. Diário Oficial da União. Brasília: Ministério da Saúde, 1998.
3. BRENNAN MB, et al. Diabetic foot ulcer severity predicts mortality among veterans with type 2 diabetes. J Diabetes Complicat. 2017; 31: 556-561.
4. CAI Y, et al. Long-term follow-up and exploration of the mechanism of stromal vascular fraction gel in chronic wounds. Stem Cell Res Ther. 2023; 14 (1): 163.
5. CHEN L, et al. Telemedicine in chronic wound management: systematic review and meta-analysis. JMIR mHealth uHealth. 2020; 8: e15574.
6. CHEN CF, et al. A Multifunctional Polyethylene Glycol/Triethoxysilane-Modified Polyurethane Foam Dressing with High Absorbency and Antiadhesion Properties Promotes Diabetic Wound Healing. Int J Mol Sci. 2023; 24 (15): 12506.
7. CORREIA EF, et al. Principais fatores de risco para amputação de membros inferiores em pacientes com pé diabético: uma revisão sistemática. Research, Society and Development. 2022; 11 (8): e59511831599.
8. DARINSKAS A, et al. Stromal vascular fraction cells for the treatment of critical limb ischemia: a pilot study. J Transl Med. 2017; 15: 143.
9. DENG C, et al. Treatment of human chronic wounds with autologous extracellular matrix/stromal vascular fraction gel: A STROBE-compliant study. Medicine (Baltimore). 2018; 97: e11667.
10. DENG C, et al. Chronic wound treatment with high-density nanofat grafting combined with negative pressure wound therapy. Int J Clin Exp Med. 2019; 12: 1402–1411.
11. FALANGA V, et al. Chronic wounds. Nat Rev Dis Primers. 2022; 8 (1): 50.
12. FARIVAR BS, et al. Prospective study of cryopreserved placental tissue wound matrix in the management of chronic venous leg ulcers. J Vasc Surg Venous Lymphat Disord. 2019; 7: 228–233.
13. FRYKBERG RG, et al. Challenges in the Treatment of Chronic Wounds. Adv Wound Care (New Rochelle) 2015; 4: 560–582.
14. GADELKARIM M, et al. Adipose-derived stem cells: Effectiveness and advances in delivery in diabetic wound healing. Biomed Pharmacother. 2018; 107: 625-633.
15. GETHIN G, et al. Evidence for person-centred care in chronic wound care: a systematic review and recommendations for practice. J Wound Care. 2020; 29 (Sup9b): S1–S22.
16. GUAN Y, et al. Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation. Sci. Adv. 2021; 7 (35): eabj0153.
17. HAO Z, et al. Review: Research progress of adipose-derived stem cells in the treatment of chronic wounds. Front Chem. 2023; 11: 1094693.
18. HASHEMI SS, et al. The healing effect of Wharton's jelly stem cells seeded on biological scaffold in chronic skin ulcers: A randomized clinical trial. J Cosmet Dermatol. 2019; 18: 1961-1967.
19. HASHEMI SS, et al. Effect of dermal fibroblasts and mesenchymal stem cells seeded on an amniotic membrane scaffold in skin regeneration: A case series. J Cosmet Dermatol. 2021; 20 (12): 4040-4047.
20. HSU LC, et al. The potential of the stem cells composite hydrogel wound dressings for promoting wound healing and skin regeneration: In vitro and in vivo evaluation. J. Biomed. Mater Res. B Appl. Biomater. 2019; 107 (2): 278–285.
21. KIM WS, et al. Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci. 2007; 48: 15–24.
22. KWON DS, et al. Treatment with bone marrow-derived stromal cells accelerates wound healing in diabetic rats. Int Wound J. 2008; 5: 453-463.
23. LIM CY, et al. Randomization in clinical studies. Korean J Anesthesiol. 2019; 72 (3): 221–232.
24. LONARDI R, et al. Autologous micro-fragmented adipose tissue for the treatment of diabetic foot minor amputations: a randomized controlled single-center clinical trial (MiFrAADiF). Stem Cell Res Ther. 2019; 10 (1): 223.
25. LOPES L, et al. Stem cell therapy for diabetic foot ulcers: a review of preclinical and clinical research. Stem Cell Res Ther. 2018; 9: 188.
26. MARINO G, et al. Therapy with autologous adipose-derived regenerative cells for the care of chronic ulcer of lower limbs in patients with peripheral arterial disease. J Surg Res. 2013; 185: 36-44.
27. MCHUGH ML. Interrater reliability: the kappa statistic. Biochemia Medica, 2012; 22(3): 276-282.
28. NUNAN R, et al. Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity. Dis Model Mech. 2014; 7: 1205-1213.
29. NUSSBAUM SR, et al. An Economic Evaluation of the Impact, Cost, and Medicare Policy Implications of Chronic Nonhealing Wounds. Value Health. 2018; 21: 27–32.
30. OLSSON M, et al. The humanistic and economic burden of chronic wounds: a systematic review. Wound Repair Regen. 2019; 27: 114-125.
31. OLIVEIRA MF, et al. Feridas em membros inferiores em diabéticos e não diabéticos: estudo de sobrevida. Rev. Gaúcha Enferm. 2019; 40: e20180016.
32. PEREIRA AS, et al. Metodologia da pesquisa científica. (1ª ed.): UFSM, NTE, 2018.
33. PROTZMAN NM, et al. Placental-Derived Biomaterials and Their Application to Wound Healing: A Review. Bioengineering (Basel). 2023; 10 (7): 829.
34. SCHMID RD, et al. Biotech in China 2021, at the beginning of the 14th five-year period ("145"). Appl Microbiol Biotechnol. 2021; 105 (10): 3971-3985.
35. SOUZA MT, et al. Integrative review: what is it? How to do it? Einstein (São Paulo), 2010; 8(1): 102-106.
36. STILLWELL S, et al. Evidence– based practice: step by step. Am J Nurs, 2010; 110(5): 41-47.
37. TROTTIER V, et al. IFATS collection: Using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells. 2008; 26: 2713-2723.
38. TURNER NJ, et al. The use of biologic scaffolds in the treatment of chronic nonhealing wounds. Adv Wound Care. 2015; 4: 490–500.
39. YAO ZX, et al. New concept of chronic wound healing: advances in the research of wound management in palliative care. Zhonghua Shao Shang Za Zhi. 2020; 36 (8): 754-757.
40. ZHANG W, et al. Stem cell-based drug delivery strategy for skin regeneration and wound healing: potential clinical applications. Inflamm Regen. 2023; 43 (1): 33.