Mecanismos de atuação dos derivados da vitamina E no combate ao câncer de mama: uma revisão integrativa

##plugins.themes.bootstrap3.article.main##

Benedito Tales Santos Sousa
Cleiton Nadson Aquino Barreto
Shamya Gabriella Corrêa Coêlho
Layza Karyne Farias Mendes
Aldaisa Pereira Lopes
Francisca Neyane Alves de Souza
Iago Luis Mesquita de Sousa
Leomá Albuquerque Matos
Leonardo Henrique Guedes de Morais Lima
Victor Alves de Oliveira

Resumo

Objetivo: realizar uma busca na literatura para compreender melhor o papel de tocoferóis e tocotrienóis no auxílio do combate ao câncer. Métodos: Trata-se de uma revisão integrativa utilizando os termos “vitamin E” AND “breast cancer” AND “estrogen” AND “oxidative stress” considerando artigos publicados nos últimos 10 anos; para a elaboração do artigo foi usado o método de fluxograma PRISMA. Resultados: Foram encontrados 11 estudos abordando aspectos in vitro, onde os pesquisadores utilizaram vários tipos e linhagens celulares; in vivo, cujo animais selecionados variaram de raça, idade e sexo; e clínicos, onde o objeto de estudo foi mulheres adultas de diferentes faixas etárias. Considerações finais: Existe um otimismo cauteloso quanto ao uso dos derivados de vitamina E. Os TTs demonstraram maior eficácia no controle dos mecanismos no tratamento do câncer de mama. Os estudos também relatam uma diminuição de complicações associadas, como o aumento da imunidade, impedindo a instalação de outras patologias.

##plugins.themes.bootstrap3.article.details##

Como Citar
SousaB. T. S., BarretoC. N. A., CoêlhoS. G. C., MendesL. K. F., LopesA. P., SouzaF. N. A. de, SousaI. L. M. de, MatosL. A., LimaL. H. G. de M., & OliveiraV. A. de. (2024). Mecanismos de atuação dos derivados da vitamina E no combate ao câncer de mama: uma revisão integrativa. Revista Eletrônica Acervo Saúde, 24(1), e14862. https://doi.org/10.25248/reas.e14862.2024
Seção
Revisão Bibliográfica

Referências

1. BADR DM, et al. The Combination of α-Tocopheryl Succinate and Sodium Selenite on Breast Cancer: A Merit or a Demerit?. Oxidative medicine and cellular longevity, 2016; 4741694.

2. BAK MJ, et al. Inhibitory Effects of γ- and δ-Tocopherols on Estrogen-Stimulated Breast Cancer In Vitro and In Vivo. Cancer prevention research (Philadelphia, Pa.), 2017; 10(3): 188–197.

3. BAK MJ, et al. Tocopherols inhibit estrogen-induced cancer stemness and OCT4 signaling in breast cancer. Carcinogenesis, 2018; 39(8): 1045–1055.

4. BASKARAN N, et al. Chemopreventive potential of ferulic acid in 7,12-dimethylbenz[a]anthracene-induced mammary carcinogenesis in Sprague-Dawley rats. European journal of pharmacology, 2010; 637(1-3): 22–29.

5. DAS GUPTA S, et al. Tocopherols inhibit oxidative and nitrosative stress in estrogen-induced early mammary hyperplasia in ACI rats. Molecular carcinogenesis, 2015; 54(9): 916–925.

6. EL-FAR SW, et al. Phytosomal bilayer-enveloped casein micelles for codelivery of monascus yellow pigments and resveratrol to breast cancer. Nanomedicine (London, England), 2018; 13(5): 481–499.

7. FIŠNAR J, et al. Relationship between tocopherols depletion and polymerised triacylglycerols formation during heating of vegetable oils. Czech Journal of Food Sciences, 2018; 36: 441-451.

8. FUENTES N e SILVEYRA P. Estrogen receptor signaling mechanisms. Advances in Protein Chemistry and Structural Biology, 2019; 116:135-170.

9. GUAN F, et al. δ- and γ-tocopherols, but not α-tocopherol, inhibit colon carcinogenesis in azoxymethane-treated F344 rats. Cancer prevention research (Philadelphia, Pa.), 2012; 5(4): 644–654.

10. HOSFORD SR, et al. Combined Inhibition of Both p110α and p110β Isoforms of Phosphatidylinositol 3-Kinase Is Required for Sustained Therapeutic Effect in PTEN-Deficient, ER+ Breast Cancer. Clinical cancer research: an official journal of the American Association for Cancer Research, 2017; 23(11): 2795–2805.

11. HSIEH TC, et al. Differential suppression of proliferation in MCF-7 and MDA-MB-231 breast cancer cells exposed to alpha-, gamma- and delta-tocotrienols is accompanied by altered expression of oxidative stress modulatory enzymes. Anticancer research, 2010; 30(10): 4169–4176.

12. HUANG Y, et al. Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials. 2013;34(29):7106-7116.

13. IRVIN W, et al. K. Symptom management in metastatic breast cancer. The oncologist, 2011, 16(9): 1203–1214.

14. JESWANI G, et al. Advances in the Delivery of Cancer Therapeutics: A Comprehensive Review. Current drug delivery, 2018; 15(1): 21–36.

15. JIANG Q. Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free radical biology & medicine, 2014; 72: 76–90.

16. JIANG Q. Natural Forms of Vitamin E as Effective Agents for Cancer Prevention and Therapy. Advances in nutrition (Bethesda, Md.), 2017; 8(6): 850–867.

17. LAI D, et al. Tumour suppressor genes in chemotherapeutic drug response. Bioscience reports, 2012; 32(4): 361–374.

18. LEE SA, et al. Combined effects of antioxidant vitamin and NOS3 genetic polymorphisms on breast cancer risk in women. Clinical nutrition (Edinburgh, Scotland), 2012; 31(1): 93–98.

19. MCCORMICK B, et al. MitoVitE, a mitochondria-targeted antioxidant, limits paclitaxel-induced oxidative stress and mitochondrial damage in vitro, and paclitaxel-induced mechanical hypersensitivity in a rat pain model. British journal of anaesthesia, 2016; 117(5): 659–666.

20. MCKENNA M, et al. The next generation of PI3K-Akt-mTOR pathway inhibitors in breast cancer cohorts. Biochimica et biophysica acta. Reviews on cancer, 2018; 1870(2): 185–197.

21. MIRANDA-VILELA AL, et al. Oil rich in carotenoids instead of vitamins C and E as a better option to reduce doxorubicin-induced damage to normal cells of Ehrlich tumor-bearing mice: hematological, toxicological and histopathological evaluations. The Journal of nutritional biochemistry, 2014; 25(11): 1161–1176.

22. MOYA CAMARENA S e JIANG Q. The Role of Vitamin E Forms in Cancer Prevention and Therapy – Studies in Human Intervention Trials and Animal Models. Nutraceuticals and Cancer, 2013; 9789400726307: 323-354.

23. PANDYRA AA, et al. Genome-wide RNAi analysis reveals that simultaneous inhibition of specific mevalonate pathway genes potentiates tumor cell death. Oncotarget. 2015;6(29):26909-26921.

24. PATACSIL D, et al. Gamma-tocotrienol induced apoptosis is associated with unfolded protein response in human breast cancer cells. J Nutr Biochem. 2012;23(1):93-100.

25. RAMDAS P, et al. Tocotrienols Modulate Breast Cancer Secretomes and Affect Cancer-Signaling Pathways in MDA-MB-231 Cells: A Label-Free Quantitative Proteomic Analysis. Nutrition and cancer, 2019; 71(8): 1263–1271.

26. SAMAVAT H e KURZER MS. Estrogen metabolism and breast cancer. Cancer Lett. 2015;356(2 Pt A):231-243.

27. SELVADURAY KR, et al. Palm tocotrienols decrease levels of pro-angiogenic markers in human umbilical vein endothelial cells (HUVEC) and murine mammary cancer cells. Genes & nutrition, 2012; 7(1): 53–61.

28. SHEN G, et al. Regulation of Nrf2, NF-kappaB, and AP-1 signaling pathways by chemopreventive agents. Antioxidants & redox signaling, 2005; 7(11-12): 1648–1663.

29. SIVEEN KS, et al. Y-tocotrienol inhibits angiogenesis-dependent growth of human hepatocellular carcinoma through abrogation of AKT/mTOR pathway in an orthotopic mouse model. Oncotarget, 2015; 5(7): 1897–1911.

30. SMOLAREK AK, et al. Dietary administration of δ- and γ-tocopherol inhibits tumorigenesis in the animal model of estrogen receptor-positive, but not HER-2 breast cancer. Cancer prevention research (Philadelphia, Pa.), 2012; 5(11): 1310–1320.

31. SRIVASTAVA A, et al. Guidelines for the management of hemophilia. Haemophilia. 2013;19(1):e1-e47.

32. SUN Y, et al. RRR-α-tocopheryl succinate induces apoptosis in human gastric cancer cells via the NF-κB signaling pathway. Oncology reports, 2014; 32(3): 1243–1248.

33. SUNTHARALINGAM K, et al. Conjugation of vitamin E analog α-TOS to Pt(IV) complexes for dual-targeting anticancer therapy. Chemical communications, 2014; 50(19), 2465–2468.

34. SYLVESTER PW, et al. Synergistic anticancer effects of combined γ-tocotrienol with statin or receptor tyrosine kinase inhibitor treatment. Genes & nutrition, 2012; 7(1): 63–74.

35. TANG WR, et al. Long-Term Effectiveness of Combined Treatment with Traditional Chinese Medicine and Western Medicine on the Prognosis of Patients with Lung Cancer. Journal of alternative and complementary medicine (New York, N.Y.), 2016; 22(3): 212–222.

36. VRTAČNIK P, et al. The many faces of estrogen signaling. Biochemia medica, 2014; 24(3): 329–342.

37. WANG Y, et al. Vitamin E γ-Tocotrienol Inhibits Cytokine-Stimulated NF-κB Activation by Induction of Anti-Inflammatory A20 via Stress Adaptive Response Due to Modulation of Sphingolipids. Journal of immunology (Baltimore, Md.: 1950), 2015; 195(1): 126–133.

38. World Health Organization. (2012, October 16). WHO | Breast Cancer Awareness Month in October.

39. YANG C e JIANG Q. Vitamin E δ-tocotrienol inhibits TNF-α-stimulated NF-κB activation by up-regulation of anti-inflammatory A20 via modulation of sphingolipid including elevation of intracellular dihydroceramides. The Journal of nutritional biochemistry, 2019; 64: 101–109.

40. YUE W, et al. Estrogen receptor-dependent and independent mechanisms of breast cancer carcinogenesis. Steroids, 2013; 78(2): 161–170.