Qualidade do sono e polimorfismo da ECA podem influenciar a modulação autonômica cardíaca em adolescentes

##plugins.themes.bootstrap3.article.main##

Nivaldo de Jesus Silva Soares Junior
Carlos Alberto Alves Dias-Filho
Andressa Coelho Ferreira
Flávio de Oliveira Pires
Danielle da Silva Dias
Rachel Melo Ribeiro
Janaína de Oliveira Brito Monzani
Vinícius Santos Mendes
Carlos José Moraes Dias
Cristiano Teixeira Mostarda

Resumo

Objetivo: Avaliar a associação do polimorfismo da Enzima Conversora de Angiotensina (ECA) e a influência da qualidade do sono na modulação autonômica cardíaca de adolescentes. Métodos: 243 adolescentes foram divididos em quatro grupos: II+GSQ (II + Boa Qualidade do Sono); II+PSQ (II + má qualidade do sono); ID/DD+GSQ (ID/DD + Boa Qualidade do Sono); ID/DD+PSQ (ID/DD + má qualidade do sono). Pressão arterial, composição corporal, nível de atividade física, distúrbio do sono e maturação sexual foram avaliados para caracterizar os grupos. Em seguida, foi realizado eletrocardiograma para análise da variabilidade da frequência cardíaca e coletadas células da mucosa oral para pesquisa genotípica da enzima conversora de angiotensina. Resultados: O principal achado deste estudo foi alteração na ação vagal, Pressão arterial sistólica (PAS), Pressão arterial diastólica (PAD), Frequência cardíaca (FC) e Índice de qualidade do sono de Pittsburgh (PSQI) no grupo DD/DI+GSQ e DD/DI+PSQ em relação aos outros grupos. Conclusão: Adolescentes com o alelo D do polimorfismo da ECA influenciam negativamente a Variabilidade da Frequência Cardíaca (VFC), independentemente da qualidade do sono; e o sono ruim também afeta negativamente a VFC. Os dois fatores (alelo D e PSQ) são ainda mais prejudiciais à população adolescente, levando a diversos problemas cardiovasculares.

##plugins.themes.bootstrap3.article.details##

Como Citar
Soares JuniorN. de J. S., Dias-FilhoC. A. A., FerreiraA. C., PiresF. de O., DiasD. da S., RibeiroR. M., MonzaniJ. de O. B., MendesV. S., DiasC. J. M., & MostardaC. T. (2024). Qualidade do sono e polimorfismo da ECA podem influenciar a modulação autonômica cardíaca em adolescentes. Revista Eletrônica Acervo Saúde, 24(5), e15217. https://doi.org/10.25248/reas.e15217.2024
Seção
Artigos Originais

Referências

1. AHN S-Y e GUPTA CJFIP. Genetic programming of hypertension, 2018; 5: 285.

2. AMARA A, et al. Thrombosis/Hemostasis, A. The effect of ACE I/D polymorphisms alone and with concomitant risk factors on coronary artery disease, Clinical and Applied Thrombosis/Hemostasis, 2018; 24: 157-163.

3. BARROSO WKS, et al. Brazilian guidelines of hypertension, 2020; 116: 516-658.

4. BERTOLAZI AN, et al. Validation of the Brazilian Portuguese version of the Pittsburgh sleep quality index. Sleep medicine, 2011; 12: 70-75.

5. FLYNN JT, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics, 2017.

6. FRANCICA JV, et al. Cardiac autonomic dysfunction in chronic stroke women is attenuated after submaximal exercise test, as evaluated by linear and nonlinear analysis. BMC cardiovascular disorders, 2015; 15: 1-8.

7. GARG R, et al. The isometric handgrip exercise as a test for unmasking hypertension in the offsprings of hypertensive parents, Journal of clinical and diagnostic research: JCDR, 2013; 7: 996.

8. GORDON D, et al. Publication of trials funded by the National Heart, Lung, and Blood Institute, New England. Journal of Medicine, 2013; 369: 1926-1934.

9. GUNEY A, et al. Effects of ACE polymorphisms and other risk factors on the severity of coronary artery disease. Genet Mol Res, 2013; 12: 6895-6906.

10. HAGSTRÖMER M, et al. Concurrent validity of a modified version of the International Physical Activity Questionnaire (IPAQ-A) in European adolescents: The HELENA Study, International journal of obesity, 2008; 32: S42-S48.

11. KADISH AH, et al. ACC/AHA clinical competence statement on electrocardiography and ambulatory electrocardiography: A report of the ACC/AHA/ACP–ASIM Task Force on Clinical Competence (ACC/AHA Committee to Develop a Clinical Competence Statement on Electrocardiography and Ambulatory Electrocardiography) Endorsed by the International Society for Holter and Noninvasive Electrocardiology. Circulation, 2001; 38: 2091-2100.

12. KARAHAN Z, et al. Association between ACE Gene Polymorphism and QT Dispersion in Patients with Acute Myocardial Infarction. The open cardiovascular medicine journal, 2016; 10: 117.

13. KEARNEY PM, et al. Global burden of hypertension: analysis of worldwide data. The Lancet, 2005; 365: 217-223.

14. LO K, et al. Subjective sleep quality, blood pressure, and hypertension: a meta‐analysis, The Journal of Clinical Hypertension. The Journal of Clinical Hypertension, 2018; 20: 592-605.

15. LUO S, et al. Relationship of quality and duration of sleep with hypertension among adults in Guangzhou. Zhonghua yu Fang yi xue za zhi [Chinese Journal of Preventive Medicine], 2021; 55, 853-859.

16. MACÊDO SRD, et al. Cardiac Autonomic Modulation is a Key Factor for High Blood Pressure in Adolescentes. Arquivos Brasileiros de Cardiologia, 2021; 117: 648-654.

17. MAGALHÃES BC, et al. Effect of obesity on sleep quality, anthropometric and autonomic parameters in adolescent. Sleep Science, 2020. 13: 298.

18. MARZBANRAD F, et al. Relationship between Heart Rate Variability and angiotensinogen gene polymorphism in diabetic and control individuals. 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2014. pp. 6683-6686.

19. MATTHEWS KA., PANTESCO EJJSM. Sleep characteristics and cardiovascular risk in children and adolescents: an enumerative review. Sleep medicine, 2016; 18: 36-49.

20. MORRIS NM e UDRY JRJJOY. Validation of a self-administered instrument to assess stage of adolescent development. Journal of youth and adolescence, 1980; 9: 271-280.

21. NG E, et al. WEKA machine learning classification in identifying autonomic dysfunction parameters associated with ACE insertion/deletion genotypes, Proceedings of the IASTED International Conference Biomedical Engineering, BioMed, 2012; pp. 161-166.

22. NISHIKINO M, et al. Genetic variation in the renin-angiotensin system and autonomic nervous system function in young healthy Japanese subjects. The Journal of Clinical Endocrinology & Metabolism, 2006; 91, 4676-4681.

23. PIETILÄ J, et al. Exploratory analysis of associations between individual lifestyles and heart rate variability-based recovery during sleep. 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015; pp. 2339-2342.

24. PROGRAM NHBPE. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents US Department of Health and Human Services, National Institutes of Health. Pediatrics, 2004.

25. RIGAT B, et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. The Journal of clinical investigation, 1990; 86: 1343-1346.

26. SINGH M, et al. Pathogenesis and clinical physiology of hypertension. Cardiology clinic, 2010; 28: 545-559.

27. SOARES JUNIOR NJ, et al. Sleep quality and regular physical activity in reducing cardiac risk. Breathing, 2023; 27: 953-960.

28. THAYER JF, et al. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Encyclopedia of Behavioral Medicine, 2010; 141: 122-131.

29. TOKER RT, et al. Circadian blood pressure rhythm in normotensive offspring of hypertensive parents. Cardiology journal, 2015; 22: 172-178.

30. WANG J-G e STAESSEN JAJE. Genetic polymorphisms in the renin–angiotensin system: relevance for susceptibility to cardiovascular disease, European journal of pharmacology, 2000; 410: 289-302.

31. WULSIN LR, et al. Autonomic imbalance as a predictor of metabolic risks, cardiovascular disease, diabetes, and mortality. The Journal of Clinical Endocrinology & Metabolism, 2015; 100: 2443-2448.

32. YUAN Y, et al. Poor sleep quality is associated with new-onset hypertension in a diverse young and middle-aged population. Sleep medicine, 2021; 88: 189-196.