Desafios e alternativas promissoras na luta contra a resistência antimicrobiana
##plugins.themes.bootstrap3.article.main##
Resumo
Objetivo: Abordar o desafio global em saúde pública e as alternativas que estão sendo desenvolvidas no combate a resistência antimicrobiana. Revisão bibliográfica: A crescente resistência antimicrobiana é um desafio global em saúde pública que está associada a um alto número de mortes anuais e ameaça superar o câncer como a principal causa de mortalidade até 2050. Ainda, o desenvolvimento de novos antimicrobianos enfrenta obstáculos significativos incluindo o alto custo, incerteza de mercado e falta de interesse da indústria farmacêutica. Buscando atenuar esse cenário, novas alternativas antimicrobianas estão sendo desenvolvidas e demonstram resultados promissores. A terapia fágica utiliza bacteriófagos para infectar bactérias, os peptídeos antimicrobianos são moléculas de aminoácidos com ação direta ou imunomoduladora, e os compostos organometâlicos são redes de coordenação de metais e ligantes orgânicos com propriedades antimicrobianas. Considerações finais: Cada uma das alternativas descritas no apresenta vantagens e desafios, mas todas oferecem esperança no desenvolvimento de novos antimicrobianos eficazes. A resistência antimicrobiana representa uma ameaça à saúde pública global e exige a busca por soluções inovadoras para garantir o sucesso contínuo da medicina moderna.
##plugins.themes.bootstrap3.article.details##
Copyright © | Todos os direitos reservados.
A revista detém os direitos autorais exclusivos de publicação deste artigo nos termos da lei 9610/98.
Reprodução parcial
É livre o uso de partes do texto, figuras e questionário do artigo, sendo obrigatória a citação dos autores e revista.
Reprodução total
É expressamente proibida, devendo ser autorizada pela revista.
Referências
2. ALEXYUK P, et al. Isolation and characterization of lytic bacteriophages active against clinical strains of E. coli and development of a phage antimicrobial cocktail. Viruses, 2022; 14(11): 2381.
3. ANDRÉ V, et al. Mg-and Mn-MOFs boost the antibiotic activity of nalidixic acid. ACS Applied Bio Materials, 2019; 2(6): 2347-2354.
4. CHU HY, et al. Two silver-based coordination polymers constructed from organic carboxylate acids and 4,4'-bipyridine-like bidentate ligands: Synthesis, structure, and antimicrobial performances. Polyhedron, 2020; 188: 114684.
5. D’HERELLE F. An invisible microbe that is antagonistic to the dysentery bacillus. CR Acad Sci, 1917; 165: 373-375.
6. DASSANAYAKE RP, et al. Bovine NK-lysin-derived peptides have bactericidal effects against Mycobacterium avium subspecies paratuberculosis. Vet Res, 2021; 52(1): 1-8.
7. DENARDI LB, et al. Activity of MSI-78, h-Lf1-11 and cecropin B antimicrobial peptides alone and in combination with voriconazole and amphotericin B against clinical isolates of Fusarium solani. J Med Mycol, 2021; 31(2): 101119.
8. DENG X, et al. Conductive MOFs based on Thiol-functionalized Linkers: Challenges, Opportunities, and Recent Advances. Coord Chem Rev, 2022; 450: 214235.
9. DONG M, et al. BING, a novel antimicrobial peptide isolated from Japanese medaka plasma, targets bacterial envelope stress response by suppressing cpxR expression. Sci Rep, 2021; 11(1): 12219.
10. DUAN H, et al. Synergistic effect and antibiofilm activity of an antimicrobial peptide with traditional antibiotics against multi-drug resistant bacteria. Microb Pathog, 2021; 105056.
11. GHAFFAR I, et al. Synthesis of chitosan coated metal organic frameworks (MOFs) for increasing vancomycin bactericidal potentials against resistant S. aureus strain. Mater Sci Eng C, 2019; 105: 110111.
12. GOVINDARAJAN DK e KANDASWAMY K. Antimicrobial peptides: A small molecule for sustainable healthcare applications. Med Microecol, 2023; 18: 100090.
13. GUARDABASSI L, et al. One health: A multifaceted concept combining diverse approaches to prevent and control antimicrobial resistance. Clin Microbiol Infect, 2020; 26(12): 1604-1605.
14. GUPTA M, et al. Bacteriophages: An Alternative to Combat Antibiotic Resistance?. J Drugs Dermatology (JDD), 2022; 21(12): 1311-1315.
15. HANCOCK REW e LEHRER R. Cationic peptides: a new source of antibiotics. Trends Biotechnol, 1998; 16(2): 82-88.
16. KAKASIS A e PANITSA G. Bacteriophage therapy as an alternative treatment for human infections. A comprehensive review. Int J Antimicrob Agents, 2019; 53(1): 16-21.
17. IQVIA Institute. Global Use of Medicines 2023. Disponível em: https://iqvia.com/insights/the-iqvia-institute/reports/the-global-use-of-medicines-2023. Acessado em: 20 de setembro de 2023.
18. LI R, et al. Metal–Organic-Framework-Based Materials for Antimicrobial Applications. ACS Nano, 2021; 15(3): 3808-3848.
19. LIANG Y, et al. Role and modulation of the secondary structure of antimicrobial peptides to improve selectivity. Biomaterials Sci, 2020; 8(24): 6858-6866.
20. LIU Y, et al. The revitalization of antimicrobial peptides in the resistance era. Pharmacol Res, 2020; 105276.
21. MALIK S, et al. Bacteriophage cocktail and phage antibiotic synergism as promising alternatives to conventional antibiotics for the control of multi-drug-resistant uropathogenic Escherichia coli. Virus Res, 2021; 302: 198496.
22. MALLAKPOUR S, et al. Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coord Chem Rev, 2022; 451: 214262.
23. MELANDER RJ, et al. Overcoming intrinsic resistance in gram-negative bacteria using small molecule adjuvants. Bioorg Med Chem Lett, 2022; 129113.
24. MOHR KI. History of antibiotics research. In: How to Overcome the Antibiotic Crisis, 2016. p. 237-272.
25. NIMBALKAR MN e BHAT BR. Adsorção simultânea de azul de meteno e metais pesados de água usando Zr-MOF com grupo carboxílico livre. J Environ Chem Eng, 2021; 9(5): 106216.
26. OFIR G e SOREK R. Contemporary phage biology: from classic models to new insights. Cell, 2018; 172(6): 1260-1270.
27. QUARESMA S, et al. Novel antibacterial azelaic acid BioMOFs. Cryst Growth & Des, 2019; 20(1): 370-382.
28. RAJU P, et al. In vitro assessment of antimicrobial, antibiofilm and larvicidal activities of bioactive nickel metal organic framework. J Drug Deliv Sci Technol, 2020; 56: 101560.
29. TASHIRO S, et al. Simultaneous arrangement of up to three different molecules on the pore surface of a metal–macrocycle framework: cooperation and competition. Angew Chem Int Ed, 2014; 53(32): 8310-8315.
30. TROTTER AJ, et al. Tecnologias recentes e emergentes para o diagnóstico rápido de infecções e resistência antimicrobiana. Opinião Atual em Microbiologia, 2019; 51: 39-45.
31. TWORT FW. An investigation on the nature of ultra-microscopic viruses. Acta Kravsi, 1961.
32. VENTOLA CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm Therapeutics, 2015; 40(4): 277.
33. WASEEM T, et al. New approaches to antimicrobial discovery: Current development and future prospects. In: New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, 2020. p. 67-77.
34. WEN H, et al. Effective Treatment of A Broad-host-range Lytic Phage SapYZU15 in Eliminating Staphylococcus aureus From Subcutaneous Infection. Microbiol Res, 2023; 127484.
35. WORLD HEALTH ORGANIZATION et al. 2019 Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline, 2019.
36. YAGHI OM e LI H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J Am Chem Soc, 1995; 117(41): 10401-10402.
37. YAO L, et al. Development and challenges of antimicrobial peptide delivery strategies in bacterial therapy: A review. Int J Biol Macromol, 2023; 126819.
38. ZHAO X, et al. The application of MOFs-based materials for antibacterials adsorption. Coord Chem Rev, 2021; 440: 213970.
39. ZHANG X, et al. MOFs and MOF-Derived Materials for Antibacterial Application. J Funct Biomater, 2022; 13(4): 215.