Influência da obesidade nas complicações gastrointestinais
##plugins.themes.bootstrap3.article.main##
Resumo
Objetivo: Identificar e correlacionar os principais achados moleculares, fisiológicos e teciduais da obesidade em distúrbios gastrointestinais e hepáticos. Revisão bibliográfica: A obesidade é um problema de saúde pública mundial, no Brasil, segundo a Pesquisa Nacional de Saúde (PNS, 2020), atualmente mais da metade dos adultos apresentam excesso de peso (60,3%, o que representa 96 milhões de pessoas), com prevalência maior no público feminino (62,6%) do que no masculino (57,5%). A obesidade está diretamente ligada a problemas como resistência à insulina, diabetes mellitus, hipertensão e risco de doenças cardiovasculares, contudo, diversas doenças podem estar subjacentes a esses quadros, principalmente doenças gastrointestinais e hepáticas, sendo assim, entender seus mecanismos fisiopatológicos torna-se essencial para possíveis intervenções médicas. Considerações finais: As complicações e doenças gastrointestinais e hepáticas tornam-se mais acentuadas na obesidade, com uma alta prevalência de refluxo gastroesofágico, esofagite erosiva, esôfago de Barrett, gastrite erosiva, disbiose, diarreia, doença hepática gordurosa não alcoólica e até mesmo câncer gástrico. Ainda, as intervenções e diagnóstico precoce refletem positivamente na sobrevida desses pacientes, nesse sentido, o gastroenterologista juntamente com a equipe multidisciplinar possui extrema importância no manejo clínico da obesidade e suas complicações.
##plugins.themes.bootstrap3.article.details##
Copyright © | Todos os direitos reservados.
A revista detém os direitos autorais exclusivos de publicação deste artigo nos termos da lei 9610/98.
Reprodução parcial
É livre o uso de partes do texto, figuras e questionário do artigo, sendo obrigatória a citação dos autores e revista.
Reprodução total
É expressamente proibida, devendo ser autorizada pela revista.
Referências
2. ARAÚJO MC, et al. An overview of the TRP-oxidative stress axis in metabolic syndrome: Insights for novel therapeutic approaches. Cells, 2022; 11(8): 1292.
3. ARON-WISNEWSKY J, et al. Metabolism and Metabolic Disorders and the Microbiome: The Intestinal Microbiota Associated With Obesity, Lipid Metabolism, and Metabolic Health-Pathophysiology and Therapeutic Strategies. Gastroenterology, 2021; 160(2): 573-599.
4. BALLESTRI S, et al. The role of nuclear receptors in the pathophysiology, natural course, and drug treatment of NAFLD in humans. Adv Ther, 2016; 33(3): 291-319.
5. BARROSO I, et al. The Genetic Basis of Metabolic Disease. Cell, 2019; 177: 146-161.
6. BARROSO WA, et al. High-fat diet inhibits PGC-1α suppressive effect on NFκB signaling in hepatocytes. Eur J Nutr, 2017; 57(5): 1891-1900.
7. BEDRIKOVETSKI S, et al. Artificial intelligence for body composition and sarcopenia evaluation on computed tomography: A systematic review and meta-analysis. European journal of radiology, 2022; 149: 110218.
8. BOURAS E, et al. Diet and Risk of Gastric Cancer: An Umbrella Review. Nutrients, 2022; 14(9): 1764.
9. CHAIT A, LAURA JD. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Frontiers in cardiovascular medicine, 2020; 7(22).
10. CHEN J, et al. Gastrointestinal Consequences of Type 2 Diabetes Mellitus and Impaired Glycemic Homeostasis: A Mendelian Randomization Study. Diabetes Care, 2023; 46(4): 828-835.
11. CROOKS B, et al. Appetite, the enteroendocrine system, gastrointestinal disease and obesity. Proc Nutr Soc, 2021; 80(1) :50-58.
12. DONG Y, et al. Abdominal obesity and colorectal cancer risk: systematic review and meta-analysis of prospective studies. Bioscience reports, 2017; 37(6): BSR20170945.
13. FRANÇA LM, et al. post-weaning exposure to high-sucrose diet induces early non-alcoholic fatty liver disease onset and progression in male mice: role of dysfunctional white adipose tissue. Journal of developmental origins of health and disease, 2020; 11(5): 509-520.
14. GAO W-Y, et al. Tanshinone IIA Downregulates Lipogenic Gene Expression and Attenuates Lipid Accumulation through the Modulation of LXRα/SREBP1 Pathway in HepG2 Cells. Biomedicines. 2021; 9(3): 326.
15. IATCU CO, et al. Gut Microbiota and Complications of Type-2 Diabetes. Nutrients, 2021; 14(1): 166.
16. KARASKOVA E, et al. Role of Adipose Tissue in Inflammatory Bowel Disease. International journal of molecular sciences, 2021; 22(8): 4226.
17. KAWAI T, et al. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol, 2021; 320(3): C375-C391.
18. KHALAFI, M, et al. The impact of exercise and dietary interventions on circulating leptin and adiponectin in individuals who are overweight and those with obesity: A systematic review and meta-analysis. Advances in Nutrition, 2023; 14(1): 128.
19. KIM H, et al. Targeting Liver X Receptors for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells, 2023; 12(9): 1292.
20. KUMAR V, et al. Biogenic phytochemicals modulating obesity: From molecular mechanism to preventive and therapeutic approaches. Evidence-Based Complementary and Alternative Medicine, 2022; 1.
21. LAUBY-SECRETAN B, et al. Obésité et cancer [Obesity and Cancer]. Bull Cancer, 2019; 106(7-8): 635-646.
22. LI X, et al. New insights into the role of dietary triglyceride absorption in obesity and metabolic diseases. Frontiers in Pharmacology, 2023; 14: 1097835.
23. LINGHU E. Obesity and chronic diarrhea: a new syndrome?. Chinese Medical Journal, 2022; 135(15): 1806-1807.
24. LIU BING-NAN, et al. Gut microbiota in obesity. World journal of gastroenterology, 2021; 27: 3837-3850.
25. MARCUS C, et al. Pediatric obesity-Long-term consequences and effect of weight loss. J Intern Med. 2022; 292(6): 870-891.
26. MASSIRONI S, et al. Inflammation and malnutrition in inflammatory bowel disease. Lancet Gastroenterol Hepatol. 2023; 8(6): 579-590.
27. MORSALI M, et al. Diet Therapeutics Interventions for Obesity: A Systematic Review and Network Meta-Analysis. J Res Health Sci. 2021; 21(3): e00521.
28. PARIS S, et al. Obesity and its effects on the esophageal mucosal barrier. Am J Physiol Gastrointest Liver Physiol. 2021; 321(3): G335-G343.
29. PATHAK P, et al. Farnesoid X receptor induces Takeda G-protein receptor 5 Crosstalk to regulate Bile Acid Synthesis and Hepatic Metabolism. J Biol Chem:jbc, 2017; M117: 784322.
30. QIU Y-Y, et al. Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Pharmacol Res. 2023; 192: 106786.
31. RODRIGUES MC, et al. Prevalência e fatores associados à síndrome metabólica em população vulnerável do norte do Brasil: um estudo transversal. Journal of Human Growth and Development, 2021; 31(2): 291.
32. SCHLOTTMANN F, et al. Obesity and esophageal cancer: GERD, Barrett´s esophagus, and molecular carcinogenic pathways. Expert Rev Gastroenterol Hepatol. 2020; 14(6): 425-433.
33. SHIN J-H, et al. Amelioration of obesity-related characteristics by a probiotic formulation in a high-fat diet-induced obese rat model. Eur J Nutr, 2017; 1-10.
34. SOHN W, et al. Obesity and the risk of primary liver cancer: A systematic review and meta-analysis. Clin Mol Hepatol. 2021; 27(1): 157-174.
35. STOPA SR, et al. Pesquisa Nacional de Saúde 2019: histórico, métodos e perspectivas. Epidemiologia e Serviços de Saúde, 2020; 29: e2020315.
36. WANG Q e WU H. T cells in adipose tissue: critical players in immunometabolism. Frontiers in immunology, 2018; 9: 2509.
37. YE Q, et al. “Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease: a systematic review and meta-analysis.” The lancet. Gastroenterology & hepatology, 2020; 5(8): 739-752.
38. YUAN S e SUSANNA CL. Adiposity, diabetes, lifestyle factors and risk of gastroesophageal reflux disease: a Mendelian randomization study. European journal of epidemiology, 2022; 37(7): 747-754.
39. ZHAN J, et al. Abdominal obesity increases the risk of reflux esophagitis: a systematic review and meta-analysis. Scand J Gastroenterol. 2022; 57(2): 131-142.