Comparação do perfil de utilização de antimicrobianos nas diferentes ondas da Covid-19 em um hospital universitário na cidade de Manaus-AM
##plugins.themes.bootstrap3.article.main##
Resumo
Objetivo: Descrever e comparar o perfil de utilização de antimicrobianos durante as duas ondas da COVID-19 em um hospital público localizado na cidade de Manaus, Amazonas. Métodos: Trata-se de um estudo descritivo e retrospectivo conduzido em um hospital universitário de Manaus, onde foram coletados dados de prontuários, prescrições e fichas de solicitações de utilização de antimicrobianos. O uso de antimicrobianos foi mensurado de acordo com a metodologia da Anatomical Therapeutic Chemical/Dose Diária Definida (ATC/DDD). Resultados: Durante o período da primeira onda, o antimicrobiano mais consumido foi a ceftriaxona (DDD 1352,01), seguido de piperacilina-tazobactam (DDD 1245,56), cefepima (DDD 1191,23) e meropenem (DDD 1139,88). Na segunda onda, o antimicrobiano mais consumido seguiu sendo a ceftriaxona com um consumo ainda maior (DDD 2010,55), seguido de meropenem (DDD 1592,22), vancomicina (DDD 722,72) e piperacilina-tazobactam (DDD 704,82). Conclusão: A pandemia da COVID-19 desencadeou um impacto no consumo de diferentes classes de antimicrobianos, com ênfase notável para cefalosporinas e beta-lactâmicos de amplo espectro. Esses achados sublinham a importância vital da vigilância cuidadosa e do monitoramento constante do consumo de antimicrobianos durante períodos de crise sanitária, como a decorrente da pandemia da COVID-19.
##plugins.themes.bootstrap3.article.details##
Copyright © | Todos os direitos reservados.
A revista detém os direitos autorais exclusivos de publicação deste artigo nos termos da lei 9610/98.
Reprodução parcial
É livre o uso de partes do texto, figuras e questionário do artigo, sendo obrigatória a citação dos autores e revista.
Reprodução total
É expressamente proibida, devendo ser autorizada pela revista.
Referências
2. BARRETO ICHC, et al. Colapso na saúde em Manaus: o fardo de não aderir às medidas não farmacológicas de redução da transmissão da Covid-19. Saúde em debate, 2021; 45: 1126-1139.
3. BRASIL. Boletins epidemiológicos do Ministério da Saúde. 2020. Disponível em: https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/boletins/epidemiologicos. Acessado em: 05 de junho de 2023.
4. BUEHRLE DJ, et al. Antibiotic consumption and stewardship at a hospital outside of an early coronavirus disease 2019 epicenter. Antimicrobial Agents and Chemotherapy, 2020; 64(11): 10-1128.
5. BUSS LF, et al. Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic. Science, 2021; 371(6526): 288–292.
6. CASTRO-LOPES A, et al. Increase of antimicrobial consumption in a tertiary care hospital during the first phase of the COVID-19 pandemic. Antibiotics, 2021; 10(7): 778.
7. COUTINHO RM, et al. Model-based estimation of transmissibility and reinfection of SARS-CoV-2 P.1 variant. Communications Medicine, 2021; 1(1): 48.
8. DE MORAES SS e BADIN, RC. Perfil do uso de antifúngicos sistêmicos em uma Unidade de Terapia Intensiva de um hospital de alta complexidade. Research, Society and Development, 2022; 11 (6): e4711628385-e4711628385.
9. FARIA N, et al. Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings. Virological, 2021; 372: 815-821.
10. FREITAS ARR, et al. The emergence of novel SARS-CoV-2 variant P.1 in Amazonas (Brazil) was temporally associated with a change in the age and gender profile of COVID-19 mortality. The Lancet Regional Health–Americas, 2021; 1.
11. GARCIA-VIDAL C, et al. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study. Clinical Microbiology and Infection, 2021; 27(1): 83–88.
12. GRAU S, et al. antimicrobial consumption among 66 acute care hospitals in Catalonia: impact of the COVID-19 pandemic. Antibiotics, 2021; 10(8): 943.
13. HAMIDI AA e YILMAZ, Ş. Antibiotic consumption in the hospital during COVID-19 pandemic, distribution of bacterial agents and antimicrobial resistance: A single-center study. Journal of Surgery and Medicine, 2021; 5(2): 124-127.
14. HE D, et al. Resolving the enigma of Iquitos and Manaus: A modeling analysis of multiple COVID-19 epidemic waves in two Amazonian cities. Proceedings of the National Academy of Sciences, 2023; 120(10): e2211422120.
15. HUGHES S, et al. Bacterial and fungal coinfection among hospitalized patients with COVID-19: a retrospective cohort study in a UK secondary-care setting. Clinical Microbiology and Infection, 2020; 26(10):1395–1399.
16. KANJ SS, et al. The battle against fungi: lessons in antifungal stewardship from COVID 19 times. International Journal of Antimicrobial Agents, 2023; 62(1):106846.
17. KAYAASLAN B, et al. Characteristics of candidemia in COVID‐19 patients; increased incidence, earlier occurrence and higher mortality rates compared to non‐COVID‐19 patients. Myc, 2021; 64(9): 1083-1091.
18. KHAN S, et al. antimicrobial consumption in patients with COVID-19: a systematic review and meta-analysis. Expert Review of Anti-infective Therapy, 2022; 20(5): 749-772.
19. KOW CS, HASAN SS. Azithromycin in patients with COVID-19: Friend or foe? Clinical Microbiology and Infection, 2021; 27(1): 136-137.
20. KARAMI Z, et al. Few bacterial co-infections but frequent empiric antibiotic use in the early phase of hospitalized patients with COVID-19: results from a multicentre retrospective cohort study in The Netherlands. Infectious Diseases, 2021; 53(2): 102–110.
21. LANGFORD BJ, et al. Antibiotic resistance associated with the COVID-19 pandemic: a systematic review and meta-analysis. Clinical Microbiology and Infection, 2023; 29(3): 302-309.
22. MARINHO MG, et al. Estudo de consumo de antimicrobianos do Centro de Terapia Intensiva de um hospital Universitário da Região Norte. Research, Society and Development, 2022; 11(5): e0611527592-e0611527592.
23. MESQUITA RF, et al. Uso racional de antimicrobianos e impacto no perfil de resistência microbiológica em tempos de pandemia pela Covid-19. Research, Society and Development, 2022; 11(1): e58211125382-e58211125382.
24. MONNET DL, HARBARTH S. Will coronavirus disease (COVID-19) have an impact on antimicrobial resistance? Eurosurveillance, 2020; 25(45): 2001886.
25. MURGADELLA-SANCHO A; et al. Impact of the strategies implemented by an antimicrobial stewardship program on the antibiotic consumption in the coronavirus disease 2019 (COVID-19) pandemic. Infection Control & Hospital Epidemiology, 2022; 43(9): 1292-1293.
26. NAVECA FG et al. COVID-19 in Amazonas, Brazil, was driven by the persistence of endemic lineages and P. 1 emergence. Nature medicine, 2021; 27(7): 1230-1238.
27. NOUVELLET P, et al. Reduction in mobility and COVID-19 transmission. Nature communications, 2021; 12(1): 1090.
28. ONZI OS, et al. Avaliação do consumo de antimicrobianos injetáveis de um hospital privado no ano de 2009. Revista Brasileira de Farmácia Hospitalar e Serviços de Saúde, 2011; 2(2): 20-25.
29. RIBEIRO AR, SOUSA NA. Besides the climate model, other variables driving the COVID-19 spread in Brazil. The Science of the Total Environment, 2020; 737: 140211.
30. RICHARDS DM, et al. Ceftriaxone: a review of its antibacterial activity, pharmacological properties and therapeutic use. Drugs, 1984; 27: 469-527.
31. TANG Y, et al. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Frontiers in immunology, 2020; 11: 1708.
32. UL MUSTAFA Z, et al. antimicrobial consumption among hospitalized patients with COVID-19 in Pakistan. SN comprehensive clinical medicine, 2021; 3(8): 1691-1695.
33. URBÁNEK K, et al. Influence of third‐generation cephalosporin utilization on the occurrence of ESBL‐positive Klebsiella pneumoniae strains. Journal of clinical pharmacy and therapeutics, 2007; 32(4): 403-408.