Monitoramento da densidade de Aedes aegypti (Diptera: Culicidae) através de ovitrampa na área urbana de Manaus – Amazonas, Brasil

##plugins.themes.bootstrap3.article.main##

Aylane Tamara dos Santos Andrade
André Correa de Oliveira
Hergen Vieira de Souza
Vinicius Braz Ribeiro
Joelma Soares da Silva
Valéria Cristina Soares Pinheiro
Rosemary Aparecida Roque

Resumo

Objetivo: Comparar dois métodos de monitoramento, armadilhas de oviposição e Levantamento Rápido de Índices para o Aedes aegypti (LiRAa), visando analisar qual método é mais eficaz para estimar a densidade populacional de A. aegypti. Métodos: Estudo comparativo entre LiRAa e densidade populacional obtida através de 600 armadilhas de oviposição no período de agosto a setembro de 2021 no município de Manaus/AM. Resultados: Foram coletados 12.211 ovos de Aedes. Destes, (12,96%) no distrito sanitário Norte, seguido pelos distritos Leste (23,16%), Sul (28,44%) e Oeste (35,44%). Foi identificada diferença apenas entre os distritos Norte e Oeste (p < 0,05). Ao analisar o LiRAa nos quatro distritos sanitários, foram fiscalizados 3.401 domicílios. Destas, (42,99%) na Zona Oeste, seguida pela Zona Leste (38,25%), Norte (12,73%) e Sul (6,03%). Ao verificar o Índice de Breteau, o teste t não pareado não identificou diferença estatística no nível de infestação de Aedes imaturos. Conclusão: Armadilhas de oviposição e LiRAa são importantes ferramentas para monitoramento da infestação de mosquitos do gênero Aedes. Porém, as ovitrampas podem fornecer dados mais precisos sobre a dispersão do vetor, o que permite maior agilidade no controle do A. aegypti, principal transmissor de arboviroses no país.

##plugins.themes.bootstrap3.article.details##

Como Citar
AndradeA. T. dos S., OliveiraA. C. de, SouzaH. V. de, RibeiroV. B., SilvaJ. S. da, PinheiroV. C. S., & RoqueR. A. (2024). Monitoramento da densidade de Aedes aegypti (Diptera: Culicidae) através de ovitrampa na área urbana de Manaus – Amazonas, Brasil. Revista Eletrônica Acervo Saúde, 24(6), e16236. https://doi.org/10.25248/reas.e16236.2024
Seção
Artigos Originais

Referências

1. ACIOLY RV. The use of oviposition traps (ovitraps) as a tool for monitoring the population of Aedes spp. in neighborhoods of Recife. Dissertation (master’s in public health) – Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife, 2006; 130 p.

2. ALMEIDA RB and ALEIXO NCR. Socio-environmental analysis of malaria morbidity in Manaus, Amazonas, Brazil. Brazilian Journal of Climatology, 2022; 30(18): 845–866.

3. ANDRADE ATS, et al. Characterization of Proliferation Sites of Aedes aegypti (Diptera: Culicidae) in the Artificial Breeding Sites of Caxias, Maranhão, Brazil. IntechOpen, 2019; 182 (186): 1-4.

4. BARBOSA IR, SILVA, LP. Influence of social and environmental determinants on the spatial distribution of dengue in the city of Natal-RN. Plural Science Magazine, 2015; 3(1): 62-75.

5. BARRETO E, et al. Evaluation of the ovitrap baited with natural attractant for monitoring Aedes spp. in Dili, capital of Timor-Leste. Ciência & Saúde Coletiva, 2020; 25(2): 665-672.

6. BRAGA IA and VALLE D. Aedes aegypti: surveillance, resistance monitoring and control alternatives in Brazil. Epidemiology and Health Services [online], 2007; 4(16): 295-302.

7. BRAZIL. Ministry of Health. Health Surveillance Secretariat. Epidemiological Bulletin, v. 54, no. 01, 2023. Available at: https ://www.gov.br/saude/pt-br/centrais-deconteudo/publicacoes/boletins/epidemiologicos/edicoes/2023/boletim-epidemiologico-volume-54no01/#:~:text=Para%20o%20ano%20de%202022,casos%2F100%20mil%20hab.).

8. BRAZIL. Ministry of Health. Department of Health Surveillance. Department of Communicable Disease Surveillance. 2013. Available at: https ://bvsms.saude.gov.br/bvs/publicacoes/manual_LiRAa_2013.pdf.

9. BRAZIL. PNCD- National Dengue Control Program. 2002. Available at: chrome-extension ://efaidnbmnnnibpcajpcglclefindmkaj/https ://bvsms.saude.gov.br/bvs/publicacoes/pncd_2002.pdf.
Acessado em: 05 de janeiro de 2024.

10. COSTA AR, et al. Analysis of dengue vector control in the backlands of Piauí between 2007 and 2011.
Public Health Notebook, 2016; 3(24): 275-281.

11. DEPOLI PAC. Efficacy of ovitraps with different attractants in the surveillance and control of Aedes. Entomo Brasilis, 2016; 9(1): 51-55.

12. DICKENS BL, et al. Determining environmental and anthropogenic factors which explain the global distribution of Aedes aegypti and Ae. albopictus. BMJ global health, 2018; 3(4): 000801.

13. FAY RW and ELIASON DA. A preferred oviposition site as a surveillance method for Aedes aegypti. Mosquito News, 1966; 26(4): 531–534.

14. GAMA R, et al. Evaluation of the sticky MosquiTRAP™ for detecting Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae) during the dry season in Belo Horizonte, Minas Gerais, Brazil. Neotropical Entomology, 2007; 2(36): 294-302.

15. GOMES AC. Measurements of urban infestation levels for Ae. (Stegomyia) aegypti and Ae. (Stegomyia) albopictus in an entomological surveillance program. SUS Epidemiological Information, 1998; 3(7): 49-57.

16. GONZALEZ PV, et al. Oviposition Behavior in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in Response to the Presence of Heterospecific and Conspecific Larvae. Journal of Medical Entomology, 2015; 2(53): 268–272.

17. GONZÁLEZ OG, et al. Detección de Aedes (Stegomyia) albopictus (Skuse) en ovitrampas en Mérida, México. Biomédica, 2021; 41(1), 153-160.

18. HASHIM NA, et al. Co-breeding Association of Aedes albopictus (Skuse) and Aedes aegypti (Linnaeus) (Diptera: Culicidae) in Relation to Location and Container Size. Trop Life Scienses Research, 2018; 29(1): 213–227.

19. KAMAL M, et al. Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Ae. albopictus under changing climate. Plos One, 2018; 12(13): 0210122.

20. KAMGANG B, et al. Temporal distribution and insecticide resistance profile of two major arbovirus vectors Aedes aegypti and Aedes albopictus in Yaoundé, the capital city of Cameroon. Parasites & vectors, 2017; 1(10): 1-9.

21. LI Y, et al. Urbanization increases Aedes albopictus larval habitats and accelerates mosquito development and survivorship. PLoS neglected tropical diseases, 2014; 11(8): 3301.

22. MELO RA, et al. The usage of ovitraps to detect Aedes aegypti in rural communities in the city of Mossoró-RN. Brazilian Journal of Development, 2021; 6(7): 62724-62737.

23. MORAES BC, et al. "Seasonality in dengue notifications from Amazonian capitals and the impacts of El Niño/La Niña." Public Health Notebooks, 2019; 35(9): 00123417.

24. OLIVEIRA LSB, et al. Monitoramento de Aedes spp. com armadilhas ovitrampa instaladas em diferentes posições. Revista Uniciências, 2021; 24 (2): 182–188.

25. OLIVEIRA SS. Spatial and temporal analysis of Aedes aegypti infestation measured by ovitraps to generate early warning of dengue in the city of Rio de Janeiro. Dissertation (master’s in public health Epidemiology) – Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro, 2016, 36 p.

26. SANOUSSI AF, et al. Diversity, physicochemical and technological characterization of elite Cassava (Manihot esculenta Crantz) Cultivars of Bante, a District of Central Benin. The Scientific World Journal, 2015; 8(2015): 1-8.

27. SILVA WR, et al. Oviposition of Aedes aegypti Linnaeus, 1762 and Aedes albopictus Skuse, 1894 (Diptera: Culicidae) under laboratory and field conditions using ovitraps associated to different control agents, Manaus, Amazonas, Brazil. Revista Brasileira de Entomologia, 2018; 62(4): 304-310.

28. SOARES-PINHEIRO VC, et al. Eggs viability of Aedes aegypti Linnaeus (Diptera, Culicidae) under different environmental and storage conditions in Manaus, Amazonas, Brazil. Brazilian Journal of Biology, 2017; 2(77): 396-401.

29. SOARES-DA-SILVA J, et al. Variation in Aedes aegypti (Linnaeus) (Diptera, Culicidae) infestation in artificiais containers in Caxias, state of Maranhão, Brazil. Revista da Sociedade Brasileira de Medicina Tropical, 2012; 45(2): 174-179.

30. WHO. WORLD HEALTH ORGANIZATION. 2022. Genuine intersectoral collaboration is needed to achieve better progress in vector control. Available in: https ://www.who.int/news/item/11-04-2022-genuine-intersectoral-collaboration-is-needed-to-achieve-better-progress-in-vector-control. Accessed: December 11, 2023.WHO-WORLD HEALTH ORGANIZATION. 2023. Dengue and severe dengue. Available in: https ://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.

31. ZAYED A, et al. Detection of Chikungunya virus in Aedes aegypti during 2011 outbreak in Al Hodayda, Yemen. Acta tropica, 2012; 123(1): 6-62.