Ageusia/Disgeusia em pacientes pós-COVID-19

##plugins.themes.bootstrap3.article.main##

Marcio Antonio Rodrigues Araujo

Resumo

Objetivo: Abordar o conhecimento atual sobre ageusia nos pacientes no período pós-COVID com foco na via do paladar como uma possível porta de entrada para o sistema nervoso central. Revisão bibliográfica: Estudos observacionais revelaram que a perda do olfato e do paladar pode ser mais preditiva no diagnóstico da COVID-19 do que outros sintomas, como fadiga, febre ou tosse. A disfunção do paladar foi associada à infecção moderada pela COVID-19. A duração da ageusia/disgeusia é de sete dias, em média, e quase todos se recuperam em um mês. Entretanto, há relatos de pacientes cujo paladar não voltou ao normal por períodos prolongados após a infecção e ainda apresentam alterações no paladar para determinados sabores. Considerações finais: Os mecanismos pelos quais essas alterações ocorrem ainda não estão bem esclarecidos, mas sabe-se que há um potencial neuroinvasivo do SARS-CoV-2 que pode desempenhar um papel na fisiopatologia das alterações gustativas, devido a um estado hiperinflamatório, invasão viral no sistema nervoso central e periférico, bem como reações imunológicas pós-infecção.

##plugins.themes.bootstrap3.article.details##

Como Citar
AraujoM. A. R. (2024). Ageusia/Disgeusia em pacientes pós-COVID-19. Revista Eletrônica Acervo Saúde, 24(11), e16907. https://doi.org/10.25248/reas.e16907.2024
Seção
Revisão Bibliográfica

Referências

1. AGHAGOLI G, et al. Neurological Involvement in COVID-19 and Potential Mechanisms: A Review. Neurocrit Care. 2021; 34(3): 1062-1071.

2. BACHMANOV AA e BEAUCHAMP GK. Taste receptor genes. Annu Rev Nutr. 2007; 27: 389-414.

3. BÉNÉZIT F, et al. Utility of hyposmia and hypogeusia for the diagnosis of COVID-19. Lancet Infect Dis. 2020; 20(9): 1014-1015.

4. BRATOSIEWICZ-WĄSIK J. Neuro-COVID-19: an insidious virus in action. Neurol Neurochir Pol. 2022; 56(1): 48-60.

5. BROLA W e WILSKI M. Neurological consequences of COVID-19. Pharmacol Rep. 2022; 74(6): 1208-1222.

6. CÁRDENAS G, et al. Neuroinflammation in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection: Pathogenesis and clinical manifestations. Curr Opin Pharmacol. 2022; 63: 102181.

7. CHEN R, et al. The Spatial and Cell-Type Distribution of SARS-CoV-2 Receptor ACE2 in the Human and Mouse Brains. Front Neurol. 2021; 11: 573095. Published 2021 Jan 20.

8. COOPER KW, et al. COVID-19 and the Chemical Senses: Supporting Players Take Center Stage. Neuron. 2020; 107(2): 219-233.

9. COPERCHINI F, et al. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev. 2020; 53: 25-32.

10. CRAIG AD. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 2002; 3(8): 655-666.

11. FARSALINOS K, et al. COVID-19 and the nicotinic cholinergic system. Eur Respir J. 2020; 56(1): 2001589.

12. GROMOVA OA, et al. Direct and Indirect Neurological Signs of COVID-19. Neurosci Behav Physiol. 2021; 51(7): 856-866.

13. KAYE R, et al. III COVID-19 anosmia reporting tool: initial findings. Otolaryngol. Head. Neck Surg. 2020
Available at: https ://journals.sagepub.com/doi/10.1177/0194599820922992. Accessed 12 September 2022.

14. KHODANOVICH MY, et al. Quantitative assessment of demyelination in ischemic stroke in vivo using macromolecular proton fraction mapping [published correction appears in J Cereb Blood Flow Metab. 2018 May;38(5):932]. J Cereb Blood Flow Metab. 2018; 38(5): 919-931.

15. KHODANOVICH MY, et al. Role of Demyelination in the Persistence of Neurological and Mental Impairments after COVID-19. Int J Mol Sci. 2022; 23(19): 11291.

16. KLEIN RS, et al. Neuroinflammation During RNA Viral Infections. Annu Rev Immunol. 2019; 37: 73-95.

17. KLEIN RS. Mechanisms of coronavirus infectious disease 2019-related neurologic diseases. Curr Opin Neurol. 2022; 35(3): 392-398.

18. KLOC M, et al. The Role of Genetic Sex and Mitochondria in Response to COVID-19 Infection. Int Arch Allergy Immunol. 2020; 181(8): 629-634.

19. LECHIEN JR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol. 2020; 277(8): 2251-2261.

20. LI YC, et al. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020; 92(6): 552-555.

21. MAURYA SK, et al. Putative role of mitochondria in SARS-CoV-2 mediated brain dysfunctions: a prospect [published online ahead of print, 2022 Aug 8]. Biotechnol Genet Eng Rev. 2022; 1-26.

22. MADWA EH, et al. Cholinergic dysfunction in COVID-19: frantic search and hoping for the best. Naunyn Schmiedebergs Arch Pharmacol. 2023; 396(3): 453-468.

23. OBIEFUNA S e DONOHOE C. Neuroanatomy, Nucleus Gustatory. In: StatPearls. Treasure Island (FL): StatPearls Publishin, 2023.

24. ONG SWX, et al. Persistent Symptoms and Association With Inflammatory Cytokine Signatures in Recovered Coronavirus Disease 2019 Patients. Open Forum Infect Dis. 2021; 8: 156.

25. PANIZ-MONDOLFI A, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol. 2020; 92(7): 699-702.

26. PATERSON RW, et al. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain. 2020; 143(10): 3104-3120.

27. PELUSO MJ, et al. Persistence, Magnitude, and Patterns of Postacute Symptoms and Quality of Life Following Onset of SARS-CoV-2 Infection: Cohort Description and Approaches for Measurement. Open Forum Infect Dis. 2021; 9(2): 640.

28. PIVNEVA TA. Mechanisms Underlying the Process of Demyelination in Multiple Sclerosis. Neurophysiology. 2009; 41(5): 365-373.

29. QIAO J, et al. The expression of SARS-CoV-2 receptor ACE2 and CD147, and protease TMPRSS2 in human and mouse brain cells and mouse brain tissues. Biochem Biophys Res Commun. 2020; 533(4): 867-871.

30. QIN Y, et al. Long-term microstructure and cerebral blood flow changes in patients recovered from COVID-19 without neurological manifestations. J Clin Invest. 2021; 131(8): 147329.

31. RADEMACHER WMH, et al. Oral adverse effects of drugs: Taste disorders. Oral Dis. 2020; 26(1): 213-223-9.

32. RIESTRA-AYORA J, et al. Long-term follow-up of olfactory and gustatory dysfunction in COVID-19: 6 months case-control study of health workers. Eur Arch Otorhinolaryngol. 2021; 278(12): 4831-4837.

33. SHARMA NK e SARODE SC. Do compromised mitochondria aggravate severity and fatality by SARS-CoV-2? Curr Med Res Opin. 2022; 38(6): 911-916.

34. TIAN T, et al. Long-term follow-up of dynamic brain changes in patients recovered from COVID-19 without neurological manifestations. JCI Insight. 2022; 7(4): 155827.

35. VITALE-CROSS L, et al. SARS-CoV-2 entry sites are present in all structural elements of the human glossopharyngeal and vagal nerves: Clinical implications. EBioMedicine. 2022; 78: 103981.

36. WAN S, et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). medRxiv (Cold Spring Harbor Laboratory). Published online February 12, 2020.

37. WANG K, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther. 2020; 5(1): 283.

38. WRAPP D, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367(6483): 1260-1263.