Prematuridade e doenças crônicas não transmissíveis

##plugins.themes.bootstrap3.article.main##

Ana Beatriz Gangana de Castro Silva
Izabella Livian dos Santos Filho
Letícia de Souza Vieira
Isabella Cristina Silva
Izabella dos Santos Silva
Luiz Henrique Nacife Gomes
Brunnella Alcantara Chagas de Freitas

Resumo

Objetivo: Buscar na literatura científica as evidências que associam a prematuridade às doenças crônicas dos diversos sistemas do corpo humano. Revisão bibliográfica: A prematuridade eleva o risco de doenças crônicas no futuro, a qual está relacionada à interrupção precoce do desenvolvimento intrauterino dos sistemas do corpo humano. As alterações funcionais dos órgãos e modificações endócrino-metabólicas predispõem doenças como obesidade, doenças cardiovasculares, diabetes mellitus, e síndrome metabólica. Destaca-se também a displasia broncopulmonar, em que o comprometimento da vasculatura e do desenvolvimento alveolar é causado pela imaturidade do sistema e pelo suporte invasivo neonatal. Os distúrbios cognitivos e morfológicos do sistema nervoso também são influenciados pela prematuridade, evidenciando uma maior incidência de paralisia cerebral, autismo, epilepsia e transtorno de déficit de atenção e hiperatividade. O aparelho digestivo, por sua vez, é afetado pelas mudanças da microbiota intestinal, as quais estão associadas à doenças graves como enterocolite necrosante e sepse tardia, além de aumentar o risco de asma, doenças alérgicas, anormalidades do desenvolvimento, obesidade de doenças mentais. Considerações finais: Apesar da necessidade de desenvolvimento de mais estudos, as relações entre a prematuridade e o desenvolvimento de doenças crônicas dos sistemas do corpo humano estão evidenciadas na literatura.

##plugins.themes.bootstrap3.article.details##

Como Citar
SilvaA. B. G. de C., Santos FilhoI. L. dos, VieiraL. de S., SilvaI. C., SilvaI. dos S., GomesL. H. N., & FreitasB. A. C. de. (2024). Prematuridade e doenças crônicas não transmissíveis. Revista Eletrônica Acervo Saúde, 24(10), e17026. https://doi.org/10.25248/reas.e17026.2024
Seção
Revisão Bibliográfica

Referências

1. CRISTEA AI, et al. Outpatient respiratory management of infants, children, and adolescents with post-prematurity respiratory disease: an official American Thoracic Society clinical practice guideline, American Journal of Respiratory and Critical Care Medicine, 2021; 204(12): 115-133.

2. CRUMP CASEY. An overview of adult health outcomes after preterm birth, early human development, 2020; 150: 105187.

3. CUNA A, et al. Dynamics of the preterm gut microbiome in health and disease, American Journal of Physiology-Gastrointestinal and Liver Physiology, 2021; 320(4): 411-G419.

4. FU Y, et al. Integration of an interpretable machine learning algorithm to identify early life risk factors of childhood obesity among preterm infants: a prospective birth cohort, BMC medicine, 2020; 18(1): 1-10.

5. GASPARRINI E, et. al. Long-term follow-up of newborns at neurological risk, Italian journal of pediatrics, 2019; 45(1): 38.

6. HEIDEMANN LA, et. al. Prevalence of metabolic syndrome-like in the follow-up of very low birth weight preterm infants and associated factors. Jornal de Pediatria, 2019; 95: 291-297.

7. HOFSTÄTTER E, et al. Introduction and feeding practices of solid food in preterm infants born in Salzburg! BMC pediatrics, 2021; 21: 1-11.

8. HOOVER J, et. al. Postmenstrual age at discharge in premature infants with and without ventilatory pattern instability, Journal of perinatology: official journal of the California Perinatal Association, 2020; 40(1): 157–162.

9. HUSTON R, et al. Early fortification of enteral feedings for infants <1250 grams birth weight receiving a human milk diet including human milk-based fortifier, Journal of Neonatal-Perinatal Medicine, 2020; 13(2): 215-221.

10. JÖUD A, et al. Associations between antenatal and perinatal risk factors and cerebral palsy: a Swedish cohort study, BMJ open, 2020; 10(8).

11. LOPES MN, et al. Dietary habits, anthropometric and metabolic profile of adolescents born prematurely. Journal of Human Growth and Development, 2020; 30(2): 241-250.

12. LOWE J, et al. Study protocol: azithromycin therapy for chronic lung disease of prematurity (AZTEC)-a randomised, placebo-controlled trial of azithromycin for the prevention of chronic lung disease of prematurity in preterm infants, BMJ open, 2020; 10(10): 041528.

13. MAKKER K, et al. Early-life determinants of childhood plasma insulin levels: implications for primordial prevention of diabetes, Pediatric research, 2023; 93(1): 189-197.

14. MASHALLY S, et. al. Late oral acetaminophen versus immediate surgical ligation in preterm infants with persistent large patent ductus arteriosus, The Journal of thoracic and cardiovascular surgery, 2018; 156(5): 1937–1944.

15. MOREAU M, et al. Neonatal and neurodevelopmental outcomes in preterm infants according to maternal body mass index: A prospective cohort study, Plos one, 2019; 14(12): 0225027.

16. MURKI S, et al. Growth and neurodevelopmental outcomes at 12 to 18 months of corrected age in preterm infants born small for gestational age. Indian Pediatrics, 2020; 57: 301-304.

17. OLDENBURG KS, et. al. Genetic and epigenetic factors and early life inflammation as predictors of neurodevelopmental outcomes, Seminars in Fetal and Neonatal Medicine, WB Saunders, 2020; 101115.

18. OU-YANG M, et al. Accelerated weight gain, prematurity, and the risk of childhood obesity: a meta-analysis and systematic review, PloS one, 2020; 15(5): 0232238.

19. PAMMI M e GAUTHAM S. Enteral lactoferrin supplementation for prevention of sepsis and necrotizing enterocolitis in preterm infants, Cochrane Database of Systematic Reviews 2020; 3.

20. PRAVIA CI e BENNY M. Long-term consequences of prematurity, Cleveland Clinic journal of medicine, 2020; 87(12): 759–767.

21. SOUTH AM., et al. Association between preterm birth and the renin− angiotensin system in adolescence: influence of sex and obesity. Journal of hypertension, 2018; 36(10): 2092-2101.

22. SOUTH AM, et. al. Obesity is Associated with Higher Blood Pressure and Higher Levels of Angiotensin II but Lower Angiotensin-(1-7) in Adolescents Born Preterm, The Journal of pediatrics, 2019; 205: 55-60.

23. SULLIVAN MC, et. al. Prematurity and cardiovascular risk at early adulthood, Child: care, health and development, 2019; 45(1): 71-78.

24. VISSERS KM, et al. The timing of initiating complementary feeding in preterm infants and its effect on overweight: a systematic review, Annals of Nutrition and Metabolism, 2018; 72(4): 307-315.

25. WESTAWAY JAF, et. al. The bacterial gut microbiome of probiotic-treated very-preterm infants: changes from admission to discharge, Pediatric research, 2021; 92(1): 142–150.

26. WILLERS M, et. al. S100A8 and S100A9 Are Important for Postnatal Development of Gut Microbiota and Immune System in Mice and Infants, Gastroenterology, 2020; 159(6): 2130–21455.