Análise do perfil clínico/sintomatológico e epidemiológico de pernambucanos não vacinados e com COVID-19

##plugins.themes.bootstrap3.article.main##

Rômulo Pessoa-e-Silva
Sayonara Maria Calado Gonçalves
Eduardo Davi Lima da Silva
Eraldo Fonseca dos Santos Junior
Erika da Silva Bezerra de Menezes
Heloisa Isabela Leão
Natali Tereza Capristano Costa
Moacyr Barreto de Melo Rego
Michelle Melgarejo da Rosa
Michelly Cristiny Pereira
Maira Galdino da Rocha Pitta

Resumo

Objetivo: Descrever, comparar e correlacionar dados diversos os sinais/sintomas, obtidos de pacientes com suspeita clínica de COVID-19, não vacinados, provenientes do Estado de Pernambuco – Brasil. Métodos: Informações clínico-epidemiológicas e sociodemográficas de 859 indivíduos coletadas entre junho de 2020 e janeiro de 2021 foram processadas e avaliadas. Resultados: Os dados evidenciaram que indivíduos positivos e negativos para o SARS-CoV-2 apresentaram percentuais semelhantes de dispneia (62,5%/62,7%), dor torácica (34,8%/34,5%) e saturação de O2 < 95% (46,7%/47,6%), o que sugere complicações respiratórias resultantes de outros patógenos respiratórios pouco investigados em pacientes com resultados negativos. Verificou-se que, exceto para mialgia no grupo > 60 anos, não houve diferenças significativas nos sinais/sintomas entre diferentes faixas etárias. Além disso, observou-se que pacientes com uma ou mais comorbidades tiveram maior probabilidade de serem sintomáticos quando comparados àqueles sem comorbidades (p = 0,001). Conclusão: O monitoramento rápido e contínuo do perfil clínico-epidemiológico de patógenos de rápida transmissibilidade, como a COVID-19, é essencial para a elaboração de medidas de controle imediatas, direcionadas e mais eficazes, evitando assim agravamentos anteriormente vivenciados.

##plugins.themes.bootstrap3.article.details##

Como Citar
Pessoa-e-SilvaR., GonçalvesS. M. C., SilvaE. D. L. da, Santos JuniorE. F. dos, MenezesE. da S. B. de, LeãoH. I., CostaN. T. C., RegoM. B. de M., RosaM. M. da, PereiraM. C., & PittaM. G. da R. (2024). Análise do perfil clínico/sintomatológico e epidemiológico de pernambucanos não vacinados e com COVID-19. Revista Eletrônica Acervo Saúde, 24(12), e17043. https://doi.org/10.25248/reas.e17043.2024
Seção
Artigos Originais

Referências

1. AGYAPON-NTRA K e MCSHARRY PE. A global analysis of the effectiveness of policy responses to COVID-19. Scientific Reports, 2023; 5629(13).

2. ATTAL N, et al. Potential for increased prevalence of neuropathic pain after the COVID-19 pandemic. Pain Reports, 2021; 6(1): 884.

3. BAUER JM e MORLEY JE. Editorial: COVID-19 in older persons: the role of nutrition. Current Opinion in Clinical Nutrition & Metabolic Care, 2021; 24(1): 1-3.

4. BIADSEE A, et al. Olfactory and Oral Manifestations of COVID-19: Sex-Related Symptoms—A Potential Pathway to Early Diagnosis. Otolaryngology - Head and Neck Surgery, 2020; 163(4): 722-728.

5. BROWN MA. Rhinovirus and COVID-19 in children: a new order out of chaos? Jornal de Pediatria, 2022; 98(6): 548-550.

6. CIEVSPE. Novo Coronavírus (2019-nCoV) | cievspe. Disponível em: https ://www.cievspe.com/novo-coronavirus-2019-ncov. Acessado em: 16 de janeiro de 2024.

7. DE FIGUEIREDO EA, et al. Estimated prevalence of COVID-19 in Brazil with probabilistic bias correction. Cadernos de Saúde Pública, 2021: 37(9): 00290120.

8. DOMENICHIELLO AF, et al. Molecular Pathways Linking Oxylipins to Nociception in Rats. Journal of Pain, 2021; 22(3): 275–299.

9. GARIBOTI DF e SILVA JÚNIOR FMR. Disparidade Étnico-racial e Mortalidade pela Covid-19: Estudo de Caso com duas Cidades de Médio Porte. Sociedade & Natureza, 2022; 34(1).

10. HEURICH A, et al. TMPRSS2 and ADAM17 Cleave ACE2 Differentially and Only Proteolysis by TMPRSS2 Augments Entry Driven by the Severe Acute Respiratory Syndrome Coronavirus Spike Protein. Journal of Virology, 2014; 88(2): 1293-307.

11. HOFFMANN M, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 2020; 181(2): 271-280.

12. HOLANDA EP, et al. Alterações neuromusculares em pacientes com COVID-19. Fisioterapia Brasil, 2021; 22(3): 469-485.

13. FUJINO T, et al. Novel SARS-CoV-2 Variant in Travelers from Brazil to Japan. Emerging Infectious Disease, 2021; 27(4): 1243–5.

14. KHAN M, et al. Epidemiological and clinical characteristics of coronavirus disease (COVID-19) cases at a screening clinic during the early outbreak period: a single-centre study. Journal of Medical Microbiology, 2020; 69(8): 1114-1123.

15. LAUGHEY W, et al. Ibuprofen, other NSAIDs and COVID-19: a narrative review. Inflammopharmacology, 2023; 31(5): 2147-2159.

16. LEOTTE J, et al. Impact and seasonality of human rhinovirus infection in hospitalized patients for two consecutive years. Jornal de Pediatria, 2017; 93(3): 294-300.

17. LI Y, et al. A Comprehensive Review of the Global Efforts on COVID-19 Vaccine Development. ACS Central Science, 2021; 7(4): 512-533.

18. LU D, et al. Intensive critical care and management of asthmatic and smoker patients in COVID-19 infection. Acta Pharmaceutica, 2023; 73(1): 29-42.

19. FGV social. 2022. Mapa da nova pobreza. Disponível em: http ://bibliotecadigital.fgv.br:80/dspace/handle/10438/32408. Acessado em: 06 de janeiro de 2023.

20. OLSEN SJ, et al. Changes in Influenza and Other Respiratory Virus Activity During the COVID-19 Pandemic — United States, 2020–2021. Morbidity and Mortality Weekly Report, 2021; 70(29): 1013-1019.

21. PARTRIDGE E, et al. Evaluation of Seasonal Respiratory Virus Activity Before and After the Statewide COVID-19 Shelter-in-Place Order in Northern California. JAMA Network Open, 2021; 4(1): 2035281.

22. PEREIRA, MC, et al. Desafios e conquistas da implementação do diagnóstico molecular da Covid-19 na Universidade Federal de Pernambuco. Estudos Universitários, 2024; 38(2): 379-400.

23. PESSOA-E-SILVA R, et al. Enhanced rapid commercial DNA extraction kit for the molecular detection of severe acute respiratory syndrome coronavirus 2: Easy adaptation to current protocols. Revista da Sociedade Brasileira de Medicina Tropical, 2021; 12(54): 0270.

24. PRICE-HAYWOOD EG, et al. Hospitalization and Mortality among Black Patients and White Patients with Covid-19. New England Journal of Medicine, 2020; 382(26): 2534-2543.

25. RIBEIRO LC e BERNARDES AT. Nota técnica Atualização da Estimativa de Subnotificação em Casos de Hospitalização por Síndrome Respiratória Aguda e Confirmados por Infecção por Covid-19 no Brasil e Estimativa para Minas Gerais. 2020. Disponível em: Microsoft Word - Atualuzacao_Estimativa_Subnotificacao_NT_Final.docx (ufmg.br). Acessado em: 06 de janeiro de 2023.

26. SANYAOLU A, et al. Comorbidity and its Impact on Patients with COVID-19. SN Comprehensive Clinical Medicine, 2020; 2(8): 1069-1076.

27. SEPE S, et al. DNA damage response at telomeres boosts the transcription of SARS‐CoV‐2 receptores ACE2 during aging. EMBO Reports, 2022; 23(2): 53658.

28. SILVA AWC, et al. Perfil epidemiológico e determinante social do COVID-19 em Macapá, Amapá, Amazônia, Brasil. Revista Científica Multidisciplinar Núcleo do Conhecimento, 2020; 04(4): 05-27.

29. SILVA RR, et al. The Interiorization of COVID-19 in the cities of Pernambuco State, Northeast of Brazil. Revista Brasileira de Saúde Materno Infantil, 2021; 21: 109–120.

30. THIRUPATHI A, et al. Exercise and COVID-19: exercise intensity reassures immunological benefits of post-COVID-19 condition. Frontiers Physiology, 2023; 5(14): 1036925.

31. TO KKW, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infectious Disease, 2020; 20(5): 565-574.

32. UHLIG K, et al. A framework for crafting clinical practice guidelines that are relevant to the care and management of people with multimorbidity. Journal of General Internal Medicine, 2014; 29(4): 670-9.

33. VARELA FH, et al. Rhinovirus as the main co-circulating virus during the COVID-19 pandemic in children. Jornal de Pediatria, 2022; 98(6): 579-586.

34. VARELA FH, et al. Absence of detection of RSV and influenza during the COVID-19 pandemic in a Brazilian cohort: Likely role of lower transmission in the community. Journal of Global Health, 2021; 1(11): 05007.

35. VIANNA LA, et al. Seasonality, molecular epidemiology, and virulence of Respiratory Syncytial Virus (RSV): A perspective into the Brazilian Influenza Surveillance Program. PLoS One, 2021; 16(5): 0251361.

36. WITKOWSKI JM, et al. Immunosenescence and COVID-19. Mechanisms of Ageing and Development, 2022; 204:111672.

37. WORLD HEALTH ORGANIZATION (WHO). Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). 2020. Disponível em :https ://www.who.int/publications/i/item/report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(covid-19). Acessado em: 06 de janeiro de 2023.

38. YAMASAKI Y, et al. Predicting the aggravation of coronavirus disease-19 pneumonia using chest computed tomography scans. PLoS One, 2022; 17(11): 0276738.

39. YU C, et al. Characteristics of asymptomatic COVID-19 infection and progression: A multicenter, retrospective study. Virulence, 2020; 11(1): 1006-1014.

40. ZELEK WM e HARRISON RA. Complement and COVID-19: Three years on, what we know, what we don't know, and what we ought to know. Immunobiology, 2023; 228(3): 152393.