Farmacogenética e farmacogenômica na COVID-19

##plugins.themes.bootstrap3.article.main##

Luigi Chermont Berni
Carla Victória Barbosa Flexa
Amanda Fonseca Mesquita
Alanna Lorena Pimentel dos Santos
Giovana Pereira Lobato Brito
Victor Leno Silva Paes
Erik William Farias Coelho
Rita de Cássia Silva Oliveira

Resumo

Objetivo: Analisar a relação entre farmacogenética e farmacogenômica com a Covid-19. Métodos: Esta revisão sistemática seguiu as diretrizes Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), utilizando as bases de dados PubMed e SciELO. Foram incluídos estudos de caso, observacionais e de bancada em inglês e português, de dezembro de 2019 a dezembro de 2022. Resultados: As diferenças genéticas populacionais influenciam os efeitos dos medicamentos na Covid-19. Estudos destacam a importância de considerar distúrbios metabólicos, como diabetes e dislipidemia, como fatores de risco. A interação farmacogenética entre medicamentos para esses distúrbios e tratamentos para a Covid-19 deve ser avaliada. Polimorfismos genéticos, como GNB3 c.825C>T, apresentam resultados conflitantes, indicando a complexidade das interações genéticas. Outros estudos analisam genes como ACE2, CYP2C19 e variantes do IFITM3, revelando associações e desafios na interpretação dos resultados. Considerações finais: Esta revisão destaca que as distinções genéticas populacionais influenciam a gravidade da Covid-19 e a resposta aos tratamentos farmacológicos. Polimorfismos em genes específicos apresentam resultados variados, indicando a necessidade de estudos mais abrangentes. O uso de medicamentos ainda carece de evidências para o manejo da Covid-19, pois pode apresentar riscos aos pacientes, destacando a importância da farmacogenética e da farmacogenômica na personalização dos tratamentos.

##plugins.themes.bootstrap3.article.details##

Como Citar
BerniL. C., FlexaC. V. B., MesquitaA. F., SantosA. L. P. dos, BritoG. P. L., PaesV. L. S., CoelhoE. W. F., & OliveiraR. de C. S. (2025). Farmacogenética e farmacogenômica na COVID-19. Revista Eletrônica Acervo Saúde, 25, e17398. https://doi.org/10.25248/reas.e17398.2025
Seção
Revisão Bibliográfica

Referências

1. CAFIERO C, et al. Pharmacogenomics and Pharmacogenetics: In Silico Prediction of Drug Effects in Treatments for Novel Coronavirus SARS-CoV2 Disease. Revista Pharmacogenomics and Personalized Medicine, 2020; 13: 463–480.

2. ČIUČIULKAITĖ I, et al. GNB3 c.825c>T polymorphism influences T-cell but not antibody response following vaccination with the mRNA-1273 vaccine. Revista Frontiers in Physiology, 2022; 13: 1-6.

3. FANG C, et al. CSF3 Is a Potential Drug Target for the Treatment of COVID-19. Revista Frontiers in Physiology, 2022; 111-8.

4. FERREIRA LLG e ANDRICOPULO AD. Impactos da pandemia. Revista ESTUDOS AVANÇADOS, 2020; 34(100): 7-22.

5. FRANCZYK B, et al. Will the Use of Pharmacogenetics Improve Treatment Efficiency in COVID-19? Revista Pharmaceuticals, 2022; 15(6): 739.

6. GÓMEZ J, et al. Angiotensin-converting enzymes (ACE, ACE2) gene variants and COVID-19 outcome. Revista Gene, 2020; 762: 145102.

7. GUTIÉRREZ‐BAUTISTA JF, et al. Major Histocompatibility Complex Class I Chain-Related α (MICA) STR Polymorphisms in COVID-19 Patients. Revista International Journal of Molecular Sciences, 2022; 23(13): 6979.

8. KALIL AC. Treating COVID-19—Off-Label Drug Use, Compassionate Use, and Randomized Clinical Trials During Pandemics. Revista JAMA, 2020; 323(19): 1897-1898.

9. KARAMI H, et al. Weighted Gene Co-Expression Network Analysis Combined with Machine Learning Validation to Identify Key Modules and Hub Genes Associated with SARS-CoV-2 Infection. Revista Journal of Clinical Medicine,2021; 10(16): 3567–3567.

10. LI HL, et al. Association between GNB3 c.825C > T polymorphism and the risk of overweight and obesity: A meta-analysis. Revista Meta Gene, 2016; 918–25.

11. LOPARDO V, et al. Gender Differences Associated with the Prognostic Value of BPIFB4 in COVID-19 Patients: A Single-Center Preliminary Study. Revista Journal of Personalized Medicine, 2022; 12(7).

12. MÖHLENDICK B, et al. ACE2 polymorphism and susceptibility for SARS-CoV-2 infection and severity of COVID-19. Revista Pharmacogenetics and Genomics, 2021; 31(8).

13. MÖHLENDICK B, et al. The GNB3 c.825C>T (rs5443) polymorphism and protection against fatal outcome of corona virus disease 2019 (COVID-19). Revista Frontiers in Genetics, 2022; 7(13): 960731.

14. MOOLA J, et al. Systematic reviews of etiology and risk. The Joanna Briggs Institute, 2017; 7.

15. NOSKE GD, et al. Structural basis of nirmatrelvir and ensitrelvir activity against naturally occurring polymorphisms of the SARS-CoV-2 main protease. Revista Journal of Biological Chemistry, 2023; 299(3): 103004.

16. PEITZ T, et al. GNB3 c.825C>T (rs5443) Polymorphism and Risk of Acute Cardiovascular Events after Renal Allograft Transplant. Revista International Journal of Molecular Sciences, 2022; 23(17): 9783.

17. PRISCILA et al. Contribution of Coronavirus-Specific Immunoglobulin G Responses to Complement Overactivation in Patients with Severe Coronavirus Disease 2019. Revista The Journal of Infectious Diseases, 2022; 226(5): 766–777.

18. QIN J, et al. Bioinformatics and in-silico findings reveal medical features and pharmacological targets of biochanin A against colorectal cancer and COVID-19. Revista Bioengineered, 2021; 12(2): 12461–12469.

19. SAHANA S, et al. Pharmacogenomic landscape of COVID-19 therapies from Indian population genomes. Revista Pharmacogenomics, 2021; 22(10): 603–618.

20. SANTOS CMC, et al. The PICO strategy for the research question construction and evidence search. Revista Latino-Americana de Enfermagem, 2007; 15(3): 508–511.

21. SCHÖNFELDER K, et al. The influence of IFITM3 polymorphisms on susceptibility to SARS-CoV-2 infection and severity of COVID-19. Revista Cytokine, 2021; 142: 155492.

22. SHASTRY BS. Pharmacogenetics and the concept of individualized medicine. Revista The Pharmacogenomics Journal, 2005; 6(1) 16–21.

23. STRAFELLA C, et al. Investigation of Genetic Variations of IL6 and IL6R as Potential Prognostic and Pharmacogenetics Biomarkers: Implications for COVID-19 and Neuroinflammatory Disorders. Revista Life, 2020; 10(12): 351.

24. TETZLAFF J, et al. The prisma 2020 statement: development of and key changes in an updated guideline for reporting systematic reviews and meta-analyses. Revista Value in Health, 2020; 23(10): S312–S3.

25. TUTEJA S, et al. Pharmacogenetic variants and risk of remdesivir‐associated liver enzyme elevations in Million Veteran Program participants hospitalized with COVID ‐19. Revista Clinical and Translational Science, 2022; 15(8): 1880–1886.

26. WANG J, et al. Clinical features and prognosis of COVID-19 patients with metabolic syndrome: A multicenter, retrospective study. Revista Medicina Clinica, 2022; 158(10): 458–465.

27. WELLS G, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.

28. ZHENG B, et al. Comparative effectiveness of sotrovimab and molnupiravir for prevention of severe covid-19 outcomes in patients in the community: observational cohort study with the OpenSAFELY platform. Revista BMJ, 2022; 379: 1-9.

29. ZHOU Y e LAUSCHKE VM. Population pharmacogenomics: an update on ethnogeographic differences and opportunities for precision public health. Revista Human Genetics, 2021; 141 (6): 1113–1136.