Efeitos da dieta hiperlipídica/hipercalórica materna e da inibição da recaptação da serotonina

##plugins.themes.bootstrap3.article.main##

Diana Isabela Machado Corrêa
Jeymesson Raphael Cardoso Vieira
Roxana Patrícia Bezerra da Silva
Rhayanny Kethylly Pereira Santos
Nathália Carla de Andrade Pereira
Thyago Moreira de Queiroz
Isabeli Lins Pinheiro
Lígia Cristina Monteiro Galindo

Resumo

Objetivo: Revisar sobre os efeitos da dieta hiperlipídica e hipercalórica (DHH) materna e da inibição da recaptação da serotonina sobre peso corporal, adiposidade e regulação do comportamento. Revisão bibliográfica: A gestação e a lactação são considerados períodos críticos para o desenvolvimento do sistema nervoso dos organismos. Nesses períodos, insultos ambientais, especialmente alterações nutricionais, podem gerar modificações metabólicas, morfofuncionais e comportamentais que se expressam a longo prazo. O consumo materno de DHH também pode reduzir a disponibilidade sináptica de serotonina (5-HT), neurotransmissor que regula a expressão fenotípica de uma série de comportamentos, inclusive o comportamento emocional. Por outro lado, os inibidores seletivos da recaptação da serotonina (ISRS), aumentam a disponibilidade sináptica de 5-HT e podem atenuar as repercussões da DHH sobre o metabolismo e a expressão de comportamentos emocionais. Considerações finais:  A literatura sugere que inibição da recaptação da serotonina pode atenuar os efeitos da DHH materna sobre peso corporal, adiposidade e comportamentos emocionais em prole de animais experimentais.

##plugins.themes.bootstrap3.article.details##

Como Citar
CorrêaD. I. M., VieiraJ. R. C., SilvaR. P. B. da, SantosR. K. P., PereiraN. C. de A., QueirozT. M. de, PinheiroI. L., & GalindoL. C. M. (2024). Efeitos da dieta hiperlipídica/hipercalórica materna e da inibição da recaptação da serotonina. Revista Eletrônica Acervo Saúde, 24(10), e17646. https://doi.org/10.25248/reas.e17646.2024
Seção
Revisão Bibliográfica

Referências

1. AN SM, et al. Adipose Tissue and Metabolic Health. Diabetes & Metabolism Journal, 2023; 595–611.

2. AZMITIA EC. Evolution of Serotonin: Sunlight to Suicide, 2010; 3–22.

3. BERLE JO e SPIGSET, O. Antidepressant Use During Breastfeeding. Current Women’s Health Reviews, 2011; 7(1): 28-34.

4. BORUE X, et al. Developmental effects of SSRIs: lessons learned from animal studies. International Journal of Developmental Neuroscience, 2007; 341–347.

5. BRUMMELTE S. et al. Developmental changes in serotonin signaling: Implications for early brain function, behavior and adaptation. Neuroscience, 2017; 342: 212-231.

6. DA SILVA AI, et al. Fluoxetine treatment of rat neonates significantly reduces oxidative stress in the hippocampus and in behavioral indicators of anxiety later in postnatal life. Can J Physiol Pharmacol. 2014; 92(4): 330-7.

7. DA SILVA RKB, et al. Effects of maternal high-fat diet on the hypothalamic components related to food intake and energy expenditure in mice offspring. Life Sciences, 2022; 307: 120880.

8. DAHLSTROEM A e FUXE K. Evidence for the ecistence of monoamine-containing neurons in the central nervous system. I demonstration of monoamines in the cell bodies of brain stem neurons. Acta physiologica Scandinavica. Supplementum, 1964; 232: 1-55.

9. DESAI M e ROSS MG. Maternal-infant nutrition and development programming of offspring appetite and obesity. Nutrition Reviews, 2020; 78(2): 25-31.

10. FALESCHIN S, et al. Maternal Dietary Inflammatory Index in Pregnancy and Offspring Behavioral Problems in Mid-Childhood and Early Adolescence. Biological Psychiatry, 2021; 90(12): 73-75.

11. FERRETTI F e MARIANI M. Simple vs. Complex Carbohydrate Dietary Patterns and the Global Overweight and Obesity Pandemic. International Journal of Environmental Research and Public Health, 2017; 14(10): 1174.

12. GALINDO LC, et al. Neonatal serotonin reuptake inhibition reduces hypercaloric diet effects on fat mass and hypothalamic gene expression in adult rats. International Journal of Developmental Neuroscience, 2015; 46(1): 76-81.

13. GAWLIŃSKA K, et al. Relationship of maternal high-fat diet during pregnancy and lactation to offspring health. Nutrition Reviews, 2021; 79(6): 709-725.

14. HALEEM DJ e MAHMOOD K. Brain serotonin in high-fat diet-induced weight gain, anxiety and spatial memory in rats. Nutritional Neuroscience, 2021; 24(3): 226-235.

15. HANSWIJK S, et al. Gestational Factors throughout Fetal Neurodevelopment: The Serotonin Link. International Journal of Molecular Sciences, 2020; 21(16): 5850.

16. HOMBERG J, et al. New perspectives on the neurodevelopmental effects of SSRIs. Trends in Pharmacological Sciences, 2010; 31(2): 60-65.

17. INZANI I e OZANNE S. Programming by maternal obesity: a pathway to poor cardiometabolic health in the offspring. Proceedings of the Nutrition Society, 2022; 81(3): 227-242.

18. JACOBS BL e AZMITIA EC. Structure and function of the brain serotonin system. Physiological Reviews, 1992; 72(1): 165-229.

19. LESCH K, et al. Anxiety-related traits in mice with modified genes of the serotonergic pathway. European Journal of Pharmacology, 2003; 480(1-3): 185-204.

20. LOW FM, et al. Developmental Plasticity and Epigenetic Mechanisms Underpinning Metabolic and Cardiovascular Diseases. Epigenomics, 2011; 3(3): 279-294.

21. MENDES-DA-SILVA C, et al. Maternal high-fat diet during pregnancy or lactation changes the somatic and neurological development of the offspring. Arquivos de Neuro-Psiquiatria, 2014; 72(2): 136-144.

22. MORGANE P, et al. Effects of prenatal protein malnutrition on the hippocampal formation. Neuroscience & Biobehavioral Reviews, 2002; 26(4): 471-483.

23. NISHITANI N, et al. Manipulation of dorsal raphe serotonergic neurons modulates active coping to inescapable stress and anxiety-related behaviors in mice and rats. Neuropsychopharmacology, 2019; 44(4): 721-732.

24. PAWLUSKI J, et al. Serotonin and motherhood: From molecules to mood. Frontiers in Neuroendocrinology, 2019; 53: 100742.

25. PELEG-RAIBSTEIN D, et al. Maternal high-fat diet in mice programs emotional behavior in adulthood. Behavioural Brain Research, 2012; 233(2): 398-404.

26. PINHEIRO IL, et al. Neonatal fluoxetine exposure modulates serotonergic neurotransmission and disturb inhibitory action of serotonin on food intake. Behavioural Brain Research, 2019; 357: 358-6570.

27. POLANSKA K, et al. Dietary Quality and Dietary Inflammatory Potential During Pregnancy and Offspring Emotional and Behavioral Symptoms in Childhood: An Individual Participant Data Meta-analysis of Four European Cohorts. Biological Psychiatry, 2021; 89(6): 550-559.

28. PUNDA H, et al. Expression Pattern of 5-HT (Serotonin) Receptors during Normal Development of the Human Spinal Cord and Ganglia and in Fetus with Cervical Spina Bifida. International Journal of Molecular Sciences, 2021; 22(14): 7320.

29. RICE D e BARONE S. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environmental Health Perspectives, 2000; 511-533.

30. SAKERS A, et al. Adipose-tissue plasticity in health and disease. Cell, 2022; 185(3): 419-446.

31. SARI Y. Serotonin receptors: from protein to physiological function and behavior. Neuroscience & Biobehavioral Reviews, 2004; 28(6): 565-582.

32. SAULLO C, et al. Effects of a maternal high-fat diet on adipose tissue in murine offspring: A systematic review and meta-analysisBiochimieElsevier B.V, 2022; 201: 18-32.

33. SCABIA G, et al. The antidepressant fluoxetine acts on energy balance and leptin sensitivity via BDNF. Scientific Reports, 2018; 8(1): 1781.

34. SGHENDO L e MIFSUD J. Understanding the molecular pharmacology of the serotonergic system: using fluoxetine as a model. Journal of Pharmacy and Pharmacology, 2012; 64(3): 317-325.

35. STUNES AK, et al. Adipocytes express a functional system for serotonin synthesis, reuptake and receptor activation. Diabetes, Obesity and Metabolism, 2011; 13(6): 551-558.

36. SULLIVAN EL, et al. Perinatal exposure to high-fat diet programs energy balance, metabolism and behavior in adulthood. Neuroendocrinology, 2011; 93(1): 1-8

37. TEISSIER A, et al. Activity of Raphé Serotonergic Neurons Controls Emotional Behaviors. Cell Reports, 1965–1976; 13(9): 1965-1976.

38. VAN GALEN KA, et al. Serotonin, food intake, and obesity. Obesity Reviews, 2021; 22(7).

39.XU Y, et al. Maternal High Fat Diet in Lactation Impacts Hypothalamic Neurogenesis and Neurotrophic Development, Leading to Later Life Susceptibility to Obesity in Male but Not Female Mice. Advanced Science, 2023; 10(35).

40. YABUT JM, et al. Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocrine Reviews, 2019; 1092-1107.