Efeitos da dieta hiperlipídica/hipercalórica materna e da inibição da recaptação da serotonina
##plugins.themes.bootstrap3.article.main##
Resumo
Objetivo: Revisar sobre os efeitos da dieta hiperlipídica e hipercalórica (DHH) materna e da inibição da recaptação da serotonina sobre peso corporal, adiposidade e regulação do comportamento. Revisão bibliográfica: A gestação e a lactação são considerados períodos críticos para o desenvolvimento do sistema nervoso dos organismos. Nesses períodos, insultos ambientais, especialmente alterações nutricionais, podem gerar modificações metabólicas, morfofuncionais e comportamentais que se expressam a longo prazo. O consumo materno de DHH também pode reduzir a disponibilidade sináptica de serotonina (5-HT), neurotransmissor que regula a expressão fenotípica de uma série de comportamentos, inclusive o comportamento emocional. Por outro lado, os inibidores seletivos da recaptação da serotonina (ISRS), aumentam a disponibilidade sináptica de 5-HT e podem atenuar as repercussões da DHH sobre o metabolismo e a expressão de comportamentos emocionais. Considerações finais: A literatura sugere que inibição da recaptação da serotonina pode atenuar os efeitos da DHH materna sobre peso corporal, adiposidade e comportamentos emocionais em prole de animais experimentais.
##plugins.themes.bootstrap3.article.details##
Copyright © | Todos os direitos reservados.
A revista detém os direitos autorais exclusivos de publicação deste artigo nos termos da lei 9610/98.
Reprodução parcial
É livre o uso de partes do texto, figuras e questionário do artigo, sendo obrigatória a citação dos autores e revista.
Reprodução total
É expressamente proibida, devendo ser autorizada pela revista.
Referências
2. AZMITIA EC. Evolution of Serotonin: Sunlight to Suicide, 2010; 3–22.
3. BERLE JO e SPIGSET, O. Antidepressant Use During Breastfeeding. Current Women’s Health Reviews, 2011; 7(1): 28-34.
4. BORUE X, et al. Developmental effects of SSRIs: lessons learned from animal studies. International Journal of Developmental Neuroscience, 2007; 341–347.
5. BRUMMELTE S. et al. Developmental changes in serotonin signaling: Implications for early brain function, behavior and adaptation. Neuroscience, 2017; 342: 212-231.
6. DA SILVA AI, et al. Fluoxetine treatment of rat neonates significantly reduces oxidative stress in the hippocampus and in behavioral indicators of anxiety later in postnatal life. Can J Physiol Pharmacol. 2014; 92(4): 330-7.
7. DA SILVA RKB, et al. Effects of maternal high-fat diet on the hypothalamic components related to food intake and energy expenditure in mice offspring. Life Sciences, 2022; 307: 120880.
8. DAHLSTROEM A e FUXE K. Evidence for the ecistence of monoamine-containing neurons in the central nervous system. I demonstration of monoamines in the cell bodies of brain stem neurons. Acta physiologica Scandinavica. Supplementum, 1964; 232: 1-55.
9. DESAI M e ROSS MG. Maternal-infant nutrition and development programming of offspring appetite and obesity. Nutrition Reviews, 2020; 78(2): 25-31.
10. FALESCHIN S, et al. Maternal Dietary Inflammatory Index in Pregnancy and Offspring Behavioral Problems in Mid-Childhood and Early Adolescence. Biological Psychiatry, 2021; 90(12): 73-75.
11. FERRETTI F e MARIANI M. Simple vs. Complex Carbohydrate Dietary Patterns and the Global Overweight and Obesity Pandemic. International Journal of Environmental Research and Public Health, 2017; 14(10): 1174.
12. GALINDO LC, et al. Neonatal serotonin reuptake inhibition reduces hypercaloric diet effects on fat mass and hypothalamic gene expression in adult rats. International Journal of Developmental Neuroscience, 2015; 46(1): 76-81.
13. GAWLIŃSKA K, et al. Relationship of maternal high-fat diet during pregnancy and lactation to offspring health. Nutrition Reviews, 2021; 79(6): 709-725.
14. HALEEM DJ e MAHMOOD K. Brain serotonin in high-fat diet-induced weight gain, anxiety and spatial memory in rats. Nutritional Neuroscience, 2021; 24(3): 226-235.
15. HANSWIJK S, et al. Gestational Factors throughout Fetal Neurodevelopment: The Serotonin Link. International Journal of Molecular Sciences, 2020; 21(16): 5850.
16. HOMBERG J, et al. New perspectives on the neurodevelopmental effects of SSRIs. Trends in Pharmacological Sciences, 2010; 31(2): 60-65.
17. INZANI I e OZANNE S. Programming by maternal obesity: a pathway to poor cardiometabolic health in the offspring. Proceedings of the Nutrition Society, 2022; 81(3): 227-242.
18. JACOBS BL e AZMITIA EC. Structure and function of the brain serotonin system. Physiological Reviews, 1992; 72(1): 165-229.
19. LESCH K, et al. Anxiety-related traits in mice with modified genes of the serotonergic pathway. European Journal of Pharmacology, 2003; 480(1-3): 185-204.
20. LOW FM, et al. Developmental Plasticity and Epigenetic Mechanisms Underpinning Metabolic and Cardiovascular Diseases. Epigenomics, 2011; 3(3): 279-294.
21. MENDES-DA-SILVA C, et al. Maternal high-fat diet during pregnancy or lactation changes the somatic and neurological development of the offspring. Arquivos de Neuro-Psiquiatria, 2014; 72(2): 136-144.
22. MORGANE P, et al. Effects of prenatal protein malnutrition on the hippocampal formation. Neuroscience & Biobehavioral Reviews, 2002; 26(4): 471-483.
23. NISHITANI N, et al. Manipulation of dorsal raphe serotonergic neurons modulates active coping to inescapable stress and anxiety-related behaviors in mice and rats. Neuropsychopharmacology, 2019; 44(4): 721-732.
24. PAWLUSKI J, et al. Serotonin and motherhood: From molecules to mood. Frontiers in Neuroendocrinology, 2019; 53: 100742.
25. PELEG-RAIBSTEIN D, et al. Maternal high-fat diet in mice programs emotional behavior in adulthood. Behavioural Brain Research, 2012; 233(2): 398-404.
26. PINHEIRO IL, et al. Neonatal fluoxetine exposure modulates serotonergic neurotransmission and disturb inhibitory action of serotonin on food intake. Behavioural Brain Research, 2019; 357: 358-6570.
27. POLANSKA K, et al. Dietary Quality and Dietary Inflammatory Potential During Pregnancy and Offspring Emotional and Behavioral Symptoms in Childhood: An Individual Participant Data Meta-analysis of Four European Cohorts. Biological Psychiatry, 2021; 89(6): 550-559.
28. PUNDA H, et al. Expression Pattern of 5-HT (Serotonin) Receptors during Normal Development of the Human Spinal Cord and Ganglia and in Fetus with Cervical Spina Bifida. International Journal of Molecular Sciences, 2021; 22(14): 7320.
29. RICE D e BARONE S. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environmental Health Perspectives, 2000; 511-533.
30. SAKERS A, et al. Adipose-tissue plasticity in health and disease. Cell, 2022; 185(3): 419-446.
31. SARI Y. Serotonin receptors: from protein to physiological function and behavior. Neuroscience & Biobehavioral Reviews, 2004; 28(6): 565-582.
32. SAULLO C, et al. Effects of a maternal high-fat diet on adipose tissue in murine offspring: A systematic review and meta-analysisBiochimieElsevier B.V, 2022; 201: 18-32.
33. SCABIA G, et al. The antidepressant fluoxetine acts on energy balance and leptin sensitivity via BDNF. Scientific Reports, 2018; 8(1): 1781.
34. SGHENDO L e MIFSUD J. Understanding the molecular pharmacology of the serotonergic system: using fluoxetine as a model. Journal of Pharmacy and Pharmacology, 2012; 64(3): 317-325.
35. STUNES AK, et al. Adipocytes express a functional system for serotonin synthesis, reuptake and receptor activation. Diabetes, Obesity and Metabolism, 2011; 13(6): 551-558.
36. SULLIVAN EL, et al. Perinatal exposure to high-fat diet programs energy balance, metabolism and behavior in adulthood. Neuroendocrinology, 2011; 93(1): 1-8
37. TEISSIER A, et al. Activity of Raphé Serotonergic Neurons Controls Emotional Behaviors. Cell Reports, 1965–1976; 13(9): 1965-1976.
38. VAN GALEN KA, et al. Serotonin, food intake, and obesity. Obesity Reviews, 2021; 22(7).
39.XU Y, et al. Maternal High Fat Diet in Lactation Impacts Hypothalamic Neurogenesis and Neurotrophic Development, Leading to Later Life Susceptibility to Obesity in Male but Not Female Mice. Advanced Science, 2023; 10(35).
40. YABUT JM, et al. Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocrine Reviews, 2019; 1092-1107.