Revestimentos em superfícies de implantes dentários visando a melhoria dos parâmetros de osseointegração
##plugins.themes.bootstrap3.article.main##
Resumo
Objetivo: Sintetizar dados da literatura científica sobre os atuais biomateriais de revestimento de superfície visando à melhoria da qualidade de osseointegração de implantes dentários (IDs). Métodos: Trata-se de uma revisão integrativa da literatura. As estratégias de busca foram desenvolvidas por meio da PubMed/Medline, Scielo, Lilacs e Google Scholar, utilizando os truncamentos dos Medical Subject Headings (MeSH) “dental implants”, “osseointegration”, “biomaterials”, “coated materials” e “biocompatible”, interligados por meio dos operadores booleanos “and/or”. O recorte temporal dos estudos incluídos foi de 10 anos (2014 a 2024), selecionando pesquisas in vivo publicadas em língua inglesa. Resultados: Com a busca, um total de 655 estudos foram localizados. Após a avaliação, 16 pesquisas foram incluídas. Alguns estudos sugeriram que a osseointegração tende a ocorrer de maneira mais rápida em implantes revestidos com hidroxiapatita (HA), mostrando-se uma escolha consistente. Observou-se uma prevalência de análises relacionadas à melhoria significativa da osseointegração em implantes metálicos, com possível aplicabilidade clínica em outros campos da medicina, como na ortopedia. Considerações finais: A HA apresentou uma prevalência como material de escolha, resultando em parâmetros adequados para a instalação de IDs, conduzindo o processo de reparo e neoformação óssea.
##plugins.themes.bootstrap3.article.details##
Copyright © | Todos os direitos reservados.
A revista detém os direitos autorais exclusivos de publicação deste artigo nos termos da lei 9610/98.
Reprodução parcial
É livre o uso de partes do texto, figuras e questionário do artigo, sendo obrigatória a citação dos autores e revista.
Reprodução total
É expressamente proibida, devendo ser autorizada pela revista.
Referências
2. ALENEZI A, et al. Osseointegration effects of local release of strontium ranelate from implant surfaces in rats. J Mater Sci Mater Med, 2019; 30: 1-12.
3. ALIKHANI M, et al. High frequency acceleration: A new tool for alveolar bone regeneration. JSM Dent Surg, 2017; 2(4).
4. ALMEIDA D, et al. In vivo osseointegration evaluation of implants coated with nanostructured hydroxyapatite in low density bone. PLoS One, 2023; 18(2).
5. AMLER MH, JOHNSON PL, SALMAN I. Histological and histochemical investigation of human alveolar socket healing in undisturbed extraction wounds. J Am Dent Assoc, 1960; 61(1): 32-44.
6. BRÅNEMARK PI, et al. Intra-osseous anchorage of dental prostheses: I. Experimental studies. Scand J Plast Reconstr Surg, 1969; 3(2): 81-100.
7. CAI B, et al. Bioinspired fabrication of calcium-doped TiP coating with nanofibrous microstructure to accelerate osseointegration. Bioconjug Chem, 2020; 31(6): 1641-50.
8. CHEN HT, et al. Osseointegrating and phase-oriented micro-arc-oxidized titanium dioxide bone implants. J Appl Biomater Funct Mater, 2021; 19: 22808000211006878.
9. CIRERA A, et al. Osseointegration around dental implants biofunctionalized with TGFβ-1 inhibitor peptides: An in vivo study in beagle dogs. J Mater Sci Mater Med, 2020; 31: 1-15.
10. CÓRDOBA A, et al. Quercitrin nanocoated implant surfaces reduce osteoclast activity in vitro and in vivo. Int J Mol Sci, 2018; 19(11): 3319.
11. DAS S, et al. Accentuated osseointegration in osteogenic nanofibrous coated titanium implants. Sci Rep, 2019; 9(1): 17638.
12. DE AVILA ED, VAN OIRSCHOT BA, VAN DEN BEUCKEN JJ. Biomaterial-based possibilities for managing peri-implantitis. J Periodontal Res, 2020; 55(2): 165-73.
13. DE OLIVEIRA PGFP, et al. Influence of nano-hydroxyapatite coating implants on gene expression of osteogenic markers and micro-CT parameters. An in vivo study in diabetic rats. J Biomed Mater Res A, 2021; 109(5): 682-94.
14. DING M, et al. Early osseointegration of micro-arc oxidation coated titanium alloy implants containing Ag: a histomorphometric study. BMC Oral Health, 2022; 22(1): 628.
15. ERCOLE FF, MELO LS, ALCOFORADO CL. Revisão integrativa versus revisão sistemática. Reme Rev Min Enferm, 2014; 18(1): 09-11.
16. HE W, et al. Enhancing osseointegration of titanium implants through large-grit sandblasting combined with micro-arc oxidation surface modification. J Mater Sci Mater Med, 2019; 30: 1-11.
17. HUANG TB, et al. Effect of the Wnt signal-RANKL/OPG axis on the enhanced osteogenic integration of a lithium incorporated surface. Biomater Sci, 2019; 7(3): 1101-16.
18. LI J, et al. Histological evaluation of titanium fiber mesh-coated implants in a rabbit femoral condyle model. Dent Mater, 2022; 38(4): 613-21.
19. LIU J, KERNS DG. Suppl 1: Mechanisms of guided bone regeneration: A review. Open Dent J. 2014; 8: 56.
20. LIU L, et al. The synergistic promotion of osseointegration by nanostructure design and silicon substitution of hydroxyapatite coatings in a diabetic model. J Mater Chem B, 2020; 8(14): 2754-67.
21. ŁUKASZEWSKA-KUSKA M, et al. Effects of a hydroxyapatite coating on the stability of endosseous implants in rabbit tibiae. Dent Med Probl, 2019; 56(2): 123-9.
22. MISTRY S, et al. Surface characteristics of titanium dental implants with improved microdesigns: An in vivo study of their osseointegration performance in goat mandible. J Biomater Appl, 2021; 35(7): 799-813.
23. NEMCAKOVA I, et al. Coating Ti6Al4V implants with nanocrystalline diamond functionalized with BMP-7 promotes extracellular matrix mineralization in vitro and faster osseointegration in vivo. Sci Rep, 2022; 12(1): 5264.
24. SANTOS CM, PIMENTA CA, NOBRE MR. A estratégia PICO para a construção da pergunta de pesquisa e busca de evidências. Rev Latino-Am Enfermagem, 2007; 15: 508-11.
25. SCARANO A, et al. Biomimetic surfaces coated with covalently immobilized collagen type I: An x-ray photoelectron spectroscopy, atomic force microscopy, micro-CT and histomorphometrical study in rabbits. Int J Mol Sci, 2019; 20(3): 724.
26. SCHMITT CM, et al. In vivo evaluation of biofunctionalized implant surfaces with a synthetic peptide (P-15) and its impact on osseointegration. A preclinical animal study. Clin Oral Implants Res, 2016; 27(11): 1339-48.
27. SHEIKH Z, SIMA C, GLOGAUER M. Bone replacement materials and techniques used for achieving vertical alveolar bone augmentation. Materials (Basel), 2015; 8(6): 2953-93.
28. SOUZA MT, SILVA MD, CARVALHO R. Revisão integrativa: o que é e como fazer. Einstein (São Paulo), 2010; 8: 102-6.
29. TANG R, et al. A novel CKIP-1 SiRNA slow-release coating on porous titanium implants for enhanced osseointegration. Biomater Adv, 2022; 137: 212864.
30. TOITA R, KANG JH, TSUCHIYA A. Phosphatidylserine liposome multilayers mediate the M1-to-M2 macrophage polarization to enhance bone tissue regeneration. Acta Biomater, 2022; 154: 583-96.
31. VĂRUŢ RM, et al. Calcium fructoborate coating of titanium-hydroxyapatite implants by chemisorption deposition improves implant osseointegration in the femur of New Zealand White rabbit experimental model. Rom J Morphol Embryol, 2020; 61(4): 1235.
32. WEN Z, et al. Mesoporous TiO2 coatings regulate ZnO nanoparticle loading and Zn2+ release on titanium dental implants for sustained osteogenic and antibacterial activity. ACS Appl Mater Interfaces, 2023; 15(12): 15235-49.
33. WHEELIS SE, et al. Effects of dicationic imidazolium-based ionic liquid coatings on oral osseointegration of titanium implants: A biocompatibility study in multiple rat demographics. Genes (Basel), 2022; 13(4): 642.
34. YAO Y, et al. Sclerostin antibody stimulates periodontal regeneration in large alveolar bone defects. Sci Rep, 2020; 10(1): 16217.
35. YIN D, et al. Effect of mussel adhesive protein coating on osteogenesis in vitro and osteointegration in vivo to alkali-treated titanium with nanonetwork structures. Int J Nanomedicine, 2019; 14: 3831-43.
36. ZAKRZEWSKI W, et al. Selected nanomaterials’ application enhanced with the use of stem cells in acceleration of alveolar bone regeneration during augmentation process. Nanomaterials (Basel), 2020; 10(6): 1216.
37. ZHANG XM, et al. Ta-coated titanium surface with superior bacteriostasis and osseointegration. Int J Nanomedicine, 2019; 14: 8693-706.