Revestimentos em superfícies de implantes dentários visando a melhoria dos parâmetros de osseointegração

##plugins.themes.bootstrap3.article.main##

Tomaz Bergue Bonina Ribeiro
Luiz Henrique Rebouças Mota
Zildenilson da Silva Sousa
Khalil Fernandes Viana
Jonas Nogueira Ferreira Maciel Gusmão
Radamés Bezerra Melo
Ana Beatriz Furtado de Oliveira
Raissa Pinheiro Moraes

Resumo

Objetivo: Sintetizar dados da literatura científica sobre os atuais biomateriais de revestimento de superfície visando à melhoria da qualidade de osseointegração de implantes dentários (IDs). Métodos: Trata-se de uma revisão integrativa da literatura. As estratégias de busca foram desenvolvidas por meio da PubMed/Medline, Scielo, Lilacs e Google Scholar, utilizando os truncamentos dos Medical Subject Headings (MeSH) “dental implants”, “osseointegration”, “biomaterials”, “coated materials” e “biocompatible”, interligados por meio dos operadores booleanos “and/or”. O recorte temporal dos estudos incluídos foi de 10 anos (2014 a 2024), selecionando pesquisas in vivo publicadas em língua inglesa. Resultados: Com a busca, um total de 655 estudos foram localizados. Após a avaliação, 16 pesquisas foram incluídas. Alguns estudos sugeriram que a osseointegração tende a ocorrer de maneira mais rápida em implantes revestidos com hidroxiapatita (HA), mostrando-se uma escolha consistente. Observou-se uma prevalência de análises relacionadas à melhoria significativa da osseointegração em implantes metálicos, com possível aplicabilidade clínica em outros campos da medicina, como na ortopedia. Considerações finais: A HA apresentou uma prevalência como material de escolha, resultando em parâmetros adequados para a instalação de IDs, conduzindo o processo de reparo e neoformação óssea.

##plugins.themes.bootstrap3.article.details##

Como Citar
RibeiroT. B. B., MotaL. H. R., SousaZ. da S., VianaK. F., GusmãoJ. N. F. M., MeloR. B., OliveiraA. B. F. de, & MoraesR. P. (2025). Revestimentos em superfícies de implantes dentários visando a melhoria dos parâmetros de osseointegração. Revista Eletrônica Acervo Saúde, 25, e17704. https://doi.org/10.25248/reas.e17704.2025
Seção
Revisão Bibliográfica

Referências

1. AJAMI E, et al. Early bone healing on hydroxyapatite-coated and chemically-modified hydrophilic implant surfaces in an ovine model. Int J Mol Sci, 2021; 22(17): 9361.

2. ALENEZI A, et al. Osseointegration effects of local release of strontium ranelate from implant surfaces in rats. J Mater Sci Mater Med, 2019; 30: 1-12.

3. ALIKHANI M, et al. High frequency acceleration: A new tool for alveolar bone regeneration. JSM Dent Surg, 2017; 2(4).

4. ALMEIDA D, et al. In vivo osseointegration evaluation of implants coated with nanostructured hydroxyapatite in low density bone. PLoS One, 2023; 18(2).

5. AMLER MH, JOHNSON PL, SALMAN I. Histological and histochemical investigation of human alveolar socket healing in undisturbed extraction wounds. J Am Dent Assoc, 1960; 61(1): 32-44.

6. BRÅNEMARK PI, et al. Intra-osseous anchorage of dental prostheses: I. Experimental studies. Scand J Plast Reconstr Surg, 1969; 3(2): 81-100.

7. CAI B, et al. Bioinspired fabrication of calcium-doped TiP coating with nanofibrous microstructure to accelerate osseointegration. Bioconjug Chem, 2020; 31(6): 1641-50.

8. CHEN HT, et al. Osseointegrating and phase-oriented micro-arc-oxidized titanium dioxide bone implants. J Appl Biomater Funct Mater, 2021; 19: 22808000211006878.

9. CIRERA A, et al. Osseointegration around dental implants biofunctionalized with TGFβ-1 inhibitor peptides: An in vivo study in beagle dogs. J Mater Sci Mater Med, 2020; 31: 1-15.

10. CÓRDOBA A, et al. Quercitrin nanocoated implant surfaces reduce osteoclast activity in vitro and in vivo. Int J Mol Sci, 2018; 19(11): 3319.

11. DAS S, et al. Accentuated osseointegration in osteogenic nanofibrous coated titanium implants. Sci Rep, 2019; 9(1): 17638.

12. DE AVILA ED, VAN OIRSCHOT BA, VAN DEN BEUCKEN JJ. Biomaterial-based possibilities for managing peri-implantitis. J Periodontal Res, 2020; 55(2): 165-73.

13. DE OLIVEIRA PGFP, et al. Influence of nano-hydroxyapatite coating implants on gene expression of osteogenic markers and micro-CT parameters. An in vivo study in diabetic rats. J Biomed Mater Res A, 2021; 109(5): 682-94.

14. DING M, et al. Early osseointegration of micro-arc oxidation coated titanium alloy implants containing Ag: a histomorphometric study. BMC Oral Health, 2022; 22(1): 628.

15. ERCOLE FF, MELO LS, ALCOFORADO CL. Revisão integrativa versus revisão sistemática. Reme Rev Min Enferm, 2014; 18(1): 09-11.

16. HE W, et al. Enhancing osseointegration of titanium implants through large-grit sandblasting combined with micro-arc oxidation surface modification. J Mater Sci Mater Med, 2019; 30: 1-11.

17. HUANG TB, et al. Effect of the Wnt signal-RANKL/OPG axis on the enhanced osteogenic integration of a lithium incorporated surface. Biomater Sci, 2019; 7(3): 1101-16.

18. LI J, et al. Histological evaluation of titanium fiber mesh-coated implants in a rabbit femoral condyle model. Dent Mater, 2022; 38(4): 613-21.

19. LIU J, KERNS DG. Suppl 1: Mechanisms of guided bone regeneration: A review. Open Dent J. 2014; 8: 56.

20. LIU L, et al. The synergistic promotion of osseointegration by nanostructure design and silicon substitution of hydroxyapatite coatings in a diabetic model. J Mater Chem B, 2020; 8(14): 2754-67.

21. ŁUKASZEWSKA-KUSKA M, et al. Effects of a hydroxyapatite coating on the stability of endosseous implants in rabbit tibiae. Dent Med Probl, 2019; 56(2): 123-9.

22. MISTRY S, et al. Surface characteristics of titanium dental implants with improved microdesigns: An in vivo study of their osseointegration performance in goat mandible. J Biomater Appl, 2021; 35(7): 799-813.

23. NEMCAKOVA I, et al. Coating Ti6Al4V implants with nanocrystalline diamond functionalized with BMP-7 promotes extracellular matrix mineralization in vitro and faster osseointegration in vivo. Sci Rep, 2022; 12(1): 5264.

24. SANTOS CM, PIMENTA CA, NOBRE MR. A estratégia PICO para a construção da pergunta de pesquisa e busca de evidências. Rev Latino-Am Enfermagem, 2007; 15: 508-11.

25. SCARANO A, et al. Biomimetic surfaces coated with covalently immobilized collagen type I: An x-ray photoelectron spectroscopy, atomic force microscopy, micro-CT and histomorphometrical study in rabbits. Int J Mol Sci, 2019; 20(3): 724.

26. SCHMITT CM, et al. In vivo evaluation of biofunctionalized implant surfaces with a synthetic peptide (P-15) and its impact on osseointegration. A preclinical animal study. Clin Oral Implants Res, 2016; 27(11): 1339-48.

27. SHEIKH Z, SIMA C, GLOGAUER M. Bone replacement materials and techniques used for achieving vertical alveolar bone augmentation. Materials (Basel), 2015; 8(6): 2953-93.

28. SOUZA MT, SILVA MD, CARVALHO R. Revisão integrativa: o que é e como fazer. Einstein (São Paulo), 2010; 8: 102-6.

29. TANG R, et al. A novel CKIP-1 SiRNA slow-release coating on porous titanium implants for enhanced osseointegration. Biomater Adv, 2022; 137: 212864.

30. TOITA R, KANG JH, TSUCHIYA A. Phosphatidylserine liposome multilayers mediate the M1-to-M2 macrophage polarization to enhance bone tissue regeneration. Acta Biomater, 2022; 154: 583-96.

31. VĂRUŢ RM, et al. Calcium fructoborate coating of titanium-hydroxyapatite implants by chemisorption deposition improves implant osseointegration in the femur of New Zealand White rabbit experimental model. Rom J Morphol Embryol, 2020; 61(4): 1235.

32. WEN Z, et al. Mesoporous TiO2 coatings regulate ZnO nanoparticle loading and Zn2+ release on titanium dental implants for sustained osteogenic and antibacterial activity. ACS Appl Mater Interfaces, 2023; 15(12): 15235-49.

33. WHEELIS SE, et al. Effects of dicationic imidazolium-based ionic liquid coatings on oral osseointegration of titanium implants: A biocompatibility study in multiple rat demographics. Genes (Basel), 2022; 13(4): 642.

34. YAO Y, et al. Sclerostin antibody stimulates periodontal regeneration in large alveolar bone defects. Sci Rep, 2020; 10(1): 16217.

35. YIN D, et al. Effect of mussel adhesive protein coating on osteogenesis in vitro and osteointegration in vivo to alkali-treated titanium with nanonetwork structures. Int J Nanomedicine, 2019; 14: 3831-43.

36. ZAKRZEWSKI W, et al. Selected nanomaterials’ application enhanced with the use of stem cells in acceleration of alveolar bone regeneration during augmentation process. Nanomaterials (Basel), 2020; 10(6): 1216.

37. ZHANG XM, et al. Ta-coated titanium surface with superior bacteriostasis and osseointegration. Int J Nanomedicine, 2019; 14: 8693-706.