XIST como modulador da resistência à quimioterapia em cânceres

##plugins.themes.bootstrap3.article.main##

Eldevan da Silva Barbosa
Larissa Rodrigues de Sousa
Antonia Claudia da Conceição Palmeira
Ana Gabrielly de Melo Matos
Ramon da Silva de Oliveira
Rakel Gomes Mendonça
Matheus Silva Alves
Susanne Suely Santos da Fonseca
Eliel Barbosa Teixeira
Jaqueline Diniz Pinho

Resumo

Objetivo: O presente estudo buscou sumarizar as principais evidências que destacam o XIST como modulador da resistência à quimioterapia em diferentes tipos tumorais. Métodos: Para tanto, foi realizado levantamento bibliográfico, selecionando estudos que correlacionam XIST com a resistência a drogas antineoplásicas. Utilizou-se ferramentas bioinformáticas, incluindo NcPathName para identificar genes alvo e a plataforma CIViC para associar esses genes com a quimiorresistência, o papel de XIST foi investigado em diferentes tipos de câncer. Resultados: XIST regula genes associados à resistência quimioterápica, como PTEN, CDKN1A, CFLAR, MDM2 e ZEB1, envolvidos em vias essenciais de quimiorresistência. A interação entre XIST e esses genes sugere mecanismos moleculares específicos por trás da resistência a agentes como o 5-fluorouracil, no câncer colorretal. A literatura sugere que o knockdown de XIST pode ser uma estratégia promissora para superar a resistência à quimioterapia. Considerações finais: Este estudo evidencia a importância de explorar lncRNAs como XIST para entender melhor os mecanismos de resistência à quimioterapia e desenvolver abordagens terapêuticas mais eficazes.

##plugins.themes.bootstrap3.article.details##

Como Citar
BarbosaE. da S., SousaL. R. de, PalmeiraA. C. da C., MatosA. G. de M., OliveiraR. da S. de, MendonçaR. G., AlvesM. S., FonsecaS. S. S. da, TeixeiraE. B., & PinhoJ. D. (2024). XIST como modulador da resistência à quimioterapia em cânceres. Revista Eletrônica Acervo Saúde, 24(12), e17830. https://doi.org/10.25248/reas.e17830.2024
Seção
Revisão Bibliográfica

Referências

1. CORREA RG, et al. Roles of NOD1 (NLRC1) and NOD2 (NLRC2) in innate immunity and inflammatory diseases. Biosci Rep, 2012; 32(6): 597-608.

2. DEB G, et al. EZH2: Not EZHY (Easy) to Deal. Mol Cancer Res, 2014; 12(5): 639-53.

3 DU P, et al. LncRNA-XIST interacts with miR-29c to modulate the chemoresistance of glioma cell to TMZ through DNA mismatch repair pathway. Biosci Rep, 2017; 37(5): BSR20170696.

4. DUAN A, et al. Long Noncoding RNA XIST Promotes Resistance to Lenvatinib in Hepatocellular Carcinoma Cells via Epigenetic Inhibition of NOD2. J Oncol, 2022; 2022: 4537343.

5. FANG X, et al. Low GAS5 expression may predict poor survival and cisplatin resistance in cervical cancer. Cell Death Dis, 2020; 11(7): 531.

6. FUCHS RP, et al. Crosstalk between repair pathways elicits double-strand breaks in alkylated DNA and implications for the action of temozolomide. Elife, 2021; 10: 69544.

7. GAO C, et al. Regulation of AKT phosphorylation by GSK3β and PTEN to control chemoresistance in breast cancer. Breast Cancer Res Treat, 2019; 176(2): 291-301.

8. HUA G, et al. LncRNA XIST Contributes to Cisplatin Resistance of Lung Cancer Cells by Promoting Cellular Glycolysis through Sponging miR-101-3. Pharmacology, 2021; 106(9-10): 498-508.

9. KUANG Y, et al. The role of lncRNA just proximal to XIST (JPX) in human disease phenotypes and RNA methylation: The novel biomarker and therapeutic target potential. Biomed Pharmacother, 2022; 155: 113753.

10. LAVOIE H, et al. ERK signalling: a master regulator of cell behaviour, life and fate. Nat Rev Mol Cell Biol, 2020; 21(10): 607-32.

11. LI Z, et al. Knockdown de lncRNA-HOTAIR downregula a resistência a drogas de células de câncer de mama à doxorrubicina através da via de sinalização PI3K/AKT/mTOR. Exp Ther Med, 2019; 18: 435-42.

12. LIU TT, et al. LncRNA XIST acts as a MicroRNA-520 sponge to regulate the Cisplatin resistance in NSCLC cells by mediating BAX through CeRNA network. Int J Med Sci, 2021; 18(2): 419-31.

13. LUO Y, et al. Long noncoding RNA (lncRNA) EIF3J-DT induces chemoresistance of gastric cancer via autophagy activation. Autophagy, 2021; 17(12): 4083-4101.

14. MA L, et al. Long non-coding RNA XIST promotes cell growth and invasion through regulating miR-497/MACC1 axis in gastric cancer. Oncotarget, 2017; 8(3): 4125-35.

15. MAHESH AN, et al. Cell cycle. Encyclopedia of Toxicology (Fourth Edition), 2023; 2: 667-674.

16. MENCK K, et al. The WNT/ROR Pathway in Cancer: From Signaling to Therapeutic Intervention. Cells, 2021; 10(1): 142.

17. OLA MS, et al. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol Cell Biochem, 2011; 351(1-2): 41-58.

18. PENG Y, et al. PI3K/Akt/mTOR Pathway and Its Role in Cancer Therapeutics: Are We Making Headway? Front Oncol, 2022; 12.

19. ROY M e MUKHERJEE S. Reversal of resistance towards cisplatin by curcumin in cervical cancer cells. Asian Pac J Cancer Prev, 2014; 15(3): 1403-10.

20. SÁNCHEZ-TILLÓ E, et al. The EMT activator ZEB1 promotes tumor growth and determines differential response to chemotherapy in mantle cell lymphoma. Cell Death Differ, 2014; 21(2): 247-57.

21. SCHOUTEN PC, et al. High XIST and Low 53BP1 Expression Predict Poor Outcome after High-Dose Alkylating Chemotherapy in Patients with a BRCA1-like Breast Cancer. Mol Cancer Ther, 2016; 15(1): 190-8.

22. SETHY C e KUNDU CN. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed Pharmacother, 2021; 137: 111285.

23. SHORNING BY, et al. The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. Int J Mol Sci, 2020; 21(12): 4507.

24. SIEGEL RL, et al. Cancer statistics, 2023. CA Cancer J Clin, 2023; 73(1): 17-48.

25. SUN J, et al. LncRNA XIST promotes human lung adenocarcinoma cells to cisplatin resistance via let-7i/BAG-1 axis. Cell Cycle, 2017; 16(21): 2100-7.

26. SUN W, et al. Knockdown of lncRNA-XIST enhances the chemosensitivity of NSCLC cells via suppression of autophagy. Oncol Rep, 2017; 38(6): 3347-54.

27. TIAN LJ, et al. Upregulation of Long Noncoding RNA (lncRNA) X-Inactive Specific Transcript (XIST) is Associated with Cisplatin Resistance in Non-Small Cell Lung Cancer (NSCLC) by Downregulating MicroRNA-144-3p. Med Sci Monit, 2019; 25: 8095-104.

28. WANG H, et al. Long non-coding RNA XIST modulates cisplatin resistance by altering PDCD4 and Fas-L expressions in human nasopharyngeal carcinoma HNE1 cells in vitro. Nan Fang Yi Ke Da Xue Xue Bao, 2019; 39(3): 357-63.

29. XIA X, et al. LncRNA XIST promotes carboplatin resistance of ovarian cancer through activating autophagy via targeting miR-506-3p/FOXP1 axis. J Gynecol Oncol, 2022; 33(6).

30. XIAO Y, et al. Long noncoding RNA XIST is a prognostic factor in colorectal cancer and inhibits 5-fluorouracil-induced cell cytotoxicity through promoting thymidylate synthase expression. Oncotarget, 2017; 8(47): 83171-82.

31. XU X, et al. Silencing of lncRNA XIST inhibits non-small cell lung cancer growth and promotes chemosensitivity to cisplatin. Aging (Albany NY), 2020; 12(6): 4711-26.

32. YAO J, et al. 53BP1 loss induces chemoresistance of colorectal cancer cells to 5-fluorouracil by inhibiting the ATM-CHK2-P53 pathway. J Cancer Res Clin Oncol, 2017; 143(3): 419-31.

33. YAROMINA A, et al. Treatment modalities in cancer: An overview. Med Oncol (Northwood Lond Engl), 2020; 37(6): 52.

34. ZAFAR A, et al. MDM2- an indispensable player in tumorigenesis. Mol Biol Rep, 2023; 50(8): 6871-83.

35. ZHANG H, et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol Cancer, 2020; 19(1): 43.

36. ZHANG M, et al. LncRNA XIST promotes chemoresistance of breast cancer cells to doxorubicin by sponging miR-200c-3p to upregulate ANLN. Clin Exp Pharmacol Physiol, 2020; 47(8): 1464-72.

37. ZHANG R, et al. Atractylenolide II reverses the influence of lncRNA XIST/miR-30a-5p/ROR1 axis on chemo-resistance of colorectal cancer cells. J Cell Mol Med, 2019; 23(5): 3151-65.

38. ZHANG Z, et al. Autophagy/ferroptosis in colorectal cancer: Carcinogenic view and nanoparticle-mediated cell death regulation. Environ Res, 2023; 238(2):117006.

39. ZHENG H, et al. LncRNA XIST/miR-137 axis strengthens chemo-resistance and glycolysis of colorectal cancer cells by hindering transformation from PKM2 to PKM1. Cancer Biomark, 2021; 30(4): 395-406.

40. ZHENG HX, et al. Fas signaling promotes motility and metastasis through epithelial-mesenchymal transition in gastrointestinal cancer. Oncogene, 2013; 32(9): 1183-92.