Padrão assimétrico da atividade mioelétrica de músculos espinhais e do quadril durante as tarefas de sentar-levantar e caminhar em adolescentes com escoliose idiopática
##plugins.themes.bootstrap3.article.main##
Resumo
Objetivo: O estudo teve como objetivo investigar os padrões de recrutamento dos músculos longuíssimo lombar (Long), iliocostal (Ilio) e glúteo médio (Gme) de ambos os lados (Cv e Cx) da coluna lombar de adolescentes com EI, durante os movimentos de sentar para levantar e marcha, e correlacionar sua ativação mioelétrica com a magnitude da escoliose. Métodos: Quinze adolescentes destros (4 homens; idade: 14,7 ± 1,9 anos) participaram do estudo. A raiz média quadrática foi extraída dos registros de um minuto dos sinais em cada tarefa motora. Resultados: Foram encontradas diferenças significativas entre os lados Cv e Cx para o Long durante os movimentos de ficar em pé (P=0,026) e sentar (P=0,015). Houve também diferença significativa no recrutamento do Long no início da fase de apoio da marcha (P=0,007). A atividade do Ilio no lado Cx correlacionou-se com o ângulo de Cobb durante a postura em pé (P=0,003; r=0,71) e sentada (P=0,03; r=0,55). Conclusão: O Long exibiu recrutamento assimétrico, mais pronunciado na convexidade. O sEMG do Ilio correlacionou-se positivamente com o ângulo de Cobb, potencialmente indicando a progressão da curva escoliótica.
##plugins.themes.bootstrap3.article.details##
Copyright © | Todos os direitos reservados.
A revista detém os direitos autorais exclusivos de publicação deste artigo nos termos da lei 9610/98.
Reprodução parcial
É livre o uso de partes do texto, figuras e questionário do artigo, sendo obrigatória a citação dos autores e revista.
Reprodução total
É expressamente proibida, devendo ser autorizada pela revista.
Referências
2. BASSANI E, et al. Avaliação da ativação neuromuscular em indivíduos com escoliose através da eletromiografia de superfície. Revista Brasileira de Fisioterapia, 2008; 12: 13-19.
3. BASSANI T, et al. Prediction of trunk muscle activation and spinal forces in adolescent idiopathic scoliosis during simulated trunk motion: A musculoskeletal modelling study. Journal of biomechanics, 2024; 163: 111918.
4. CHAN YL, et al. MRI evaluation of multifidus muscles in adolescent idiopathic scoliosis. Pediatric Radiology, 1999; 29: 360-363.
5. CHEUNG J, et al. A preliminary study on electromyographic analysis of the paraspinal musculature in idiopathic scoliosis. European Spine Journal, 2005; 14: 130-137.
6. CHWAŁA W, et al. Electromyographic assessment of functional symmetry of paraspinal muscles during static exercises in adolescents with idiopathic scoliosis. BioMed Research International, 2014; 2014: 573276.
7. COBB JR. Outline for the study of scoliosis. American Academy of Orthopaedic Surgeons, 1948; 5: 261-275.
8. DE LUCA CJ. Use of the surface EMG signal for performance evaluation of back muscles. Muscle & Nerve, 1993; 16: 210-216.
9. DE LUCA CJ. The use of surface electromyography in biomechanics. Journal of Applied Biomechanics, 1997; 13: 135-163.
10. DE OLIVEIRA AS, et al. Electromyographic analysis of paravertebral muscles in patients with idiopathic scoliosis. Spine, 2011; 36: E334-E339.
11. DUN J, et al. Screening for adolescent idiopathic scoliosis: evidence report and systematic review for the U.S. preventive services task force. JAMA, 2018; 9:173-187.
12. FARAHPOUR N, et al. Electromyographic responses of erector spinae and lower limb's muscles to dynamic postural perturbations in patients with adolescent idiopathic scoliosis. Journal of Electromyography and Kinesiology, 2014; 24: 645-651.
13. FARAHPOUR N, et al. Electromyographic activity of erector spinae and external oblique muscles during trunk lateral bending and axial rotation in patients with adolescent idiopathic scoliosis and healthy subjects. Clinical Biomechanics (Bristol, Avon), 2015; 30: 411-417.
14. GARCIA MAC, VIEIRA TMM. Surface electromyography: why, when, and how to use it. Revista Andaluza de Medicina del Deporte, 2011; 4: 17-28.
15. GAUDREAULT N, et al. Assessment of the paraspinal muscles of subjects presenting an idiopathic scoliosis: an EMG pilot study. BMC Musculoskeletal Disorders, 2005; 6: 14.
16. GOULART FR, VALLS-SOLÉ J. Patterned electromyographic activity in the sit-to-stand movement. Clinical Neurophysiology, 1999; 110: 1634-1640.
17. HERMENS HJ, et al. Development of recommendations for SEMG sensors and sensor placement procedures. Journal of Electromyography and Kinesiology, 2000; 10: 361-374.
18. KONIECZNY MR, et al. Epidemiology of adolescent idiopathic scoliosis. Journal of Children’s Orthopaedics, 2013; 7: 3-9.
19. KONRAD P. The ABC of EMG: A Practical Introduction to Kinesiological Electromyography. Norax Inc., USA, 2005.
20. KUO FC, et al. Postural control strategies related to anticipatory perturbation and quick perturbation in adolescent idiopathic scoliosis. Spine, 2011; 36: 810-816.
21. KWOK G, et al. Evaluation of Myoelectric Activity of Paraspinal Muscles in Adolescents with Idiopathic Scoliosis during Habitual Standing and Sitting. BioMed Research International, 2015; 2015: 958450.
22. LEE SK, et al. Muscle activity of the gluteus medius at different gait speeds. Journal of Physical Therapy Science, 2014; 26: 1915-1917.
23. LENKE LG, et al. Prospective dynamic functional evaluation of gait and spinal balance following spinal fusion in adolescent idiopathic scoliosis. Spine, 2001; 26: E330-E337.
24. MAHAUDENS P, et al. Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis. European Spine Journal, 2009; 18: 512-521.
25. MAHAUDENS P, et al. Gait in patients with adolescent idiopathic scoliosis. Effect of surgery at 10 years of follow-up. Gait & Posture, 2018; 61: 141-148.
26. MANNION AF, et al. Paraspinal muscle fiber type alterations associated with scoliosis: an old problem revisited with new evidence. European Spine Journal, 1998; 7: 289-293.
27. NEGRINI S, et al. Italian guidelines on rehabilitation treatment of adolescents with scoliosis or other spinal deformities. Europa Medicophysica, 2005; 41: 183-201.
28. ROMANO M, et al. Exercises for adolescent idiopathic scoliosis: a Cochrane Systematic Review. Spine, 2013; 38: 883-893.
29. SCHMID AB, et al. Paraspinal muscle activity during symmetrical and asymmetrical weight training in idiopathic scoliosis. Journal of Sport Rehabilitation, 2010; 19: 315-327.
30. SOUZA VH, et al. SignalHunter: Software for electrophysiological data analysis and visualization (Version v1.0.0).
31. SYCZEWSKA M, et al. Influence of the structural deformity of the spine on the gait pathology in scoliotic patients. Gait & Posture, 2012; 35: 209-213.
32. WANG W, et al. Synergy Analysis of Back Muscle Activities in Patients With Adolescent Idiopathic Scoliosis Based on High-Density Electromyogram. IEEE Transactions on Biomedical Engineering, 2022; 69: 2006-2017.
33. ZETTERBERG C, et al. Electromyography of the paravertebral muscles in idiopathic scoliosis. Measurements of amplitude and spectral changes under load. Acta Orthopaedica Scandinavica, 1984; 55: 304-309.