Parâmetros de crescimento para otimização do cultivo de isolados de Bacillus thuringiensis (Berliner, 1911) no controle de Aedes aegypti (Linnaeus, 1762)

##plugins.themes.bootstrap3.article.main##

Katiane dos Santos Lobo
Bianca Geovana Viana Pereira
Aylane Tamara dos Santos Andrade
Joelma Soares da Silva
Valéria Cristina Soares Pinheiro
Rosemary Aparecida Roque

Resumo

Objetivo: Obter os parâmetros de crescimento de linhagens de Bacillus thuringiensis ativas a Aedes aegypti. Métodos: Dezoito combinações de pH e temperaturas foram testadas para obtenção das melhores condições de crescimento para três isolados do BBENMA, BtMA-690, BtMA-750 e BtMA-1114. Para comprovação das melhores condições de crescimento foi realizada a quantificação do inóculo obtendo a concentração de esporos/mL e massa celular (g/L). As CL50 dos isolados cultivados nas condições extremas de temperatura e das duas melhores condições de crescimento foram testadas em bioensaios com de A. aegypti para confirmação de toxicidade. Resultados: Os isolados BtMA-690 e BtMA-750 demostraram melhores condições de crescimento nas combinações de 34°C com pH 8,0 para concentração de esporos/mL e 30°C com pH 6,0 para massa celular, enquanto BtMA-1114 apresentou melhor crescimento nas condições de 28°C com pH 7,0 para concentração de esporos/mL e 34°C com pH 6,0 para massa celular. Após 72 horas, BtMA-690 apresentou mortalidade de 35%, na combinação 26°C com pH 6,0, BtMA-750 acima de 90% para nove das condições testadas e BtMA-1114 com 14%, para 36°C com pH 7,0. Conclusão: A otimização do crescimento das linhagens de Bt em laboratório possibilitará melhor adequação dos parâmetros de crescimento utilizados no cultivo dos isolados.

##plugins.themes.bootstrap3.article.details##

Como Citar
LoboK. dos S., PereiraB. G. V., AndradeA. T. dos S., SilvaJ. S. da, PinheiroV. C. S., & RoqueR. A. (2024). Parâmetros de crescimento para otimização do cultivo de isolados de Bacillus thuringiensis (Berliner, 1911) no controle de Aedes aegypti (Linnaeus, 1762). Revista Eletrônica Acervo Saúde, 24(12), e18197. https://doi.org/10.25248/reas.e18197.2024
Seção
Artigos Originais

Referências

1. ALVES SB. Microbial control of insects. 2nd ed. Piracicaba: FEALQ, 1998; 1163.

2. ALVES SB e MORAES SA. Quantification of insect pathogen inoculum. In: ALVES SB (Ed). Microbial control of insects. 2nd ed. Piracicaba, SP: FEALQ, 1998; 765-777.

3. BEN-DOV E. Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins. Toxins, 2014; 6(4): 1222-1243.

4. BRASIL. Secretariat of Health and Environmental Surveillance. Ministry of Health. Monitoring of urban arboviruses: epidemiological weeks 1 a 35 de 2023. Epidemiological Bulletin, 2023; 54(13): 1-24.

5. BRAVO A, et al. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect biochemistry and molecular biology, 2011; 41(7): 423-431.

6. BRAVO A, et al. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 2007; 49(4): 423-435.

7. BRÜHL CA, et al. Environmental and socioeconomic effects of mosquito control in Europe using the biocide Bacillus thuringiensis subsp. israelensis (Bti). Science of The Total Environment, 2020; 724: 137800.

8. CAMPANINI EB, et al. Isolation of Bacillus thuringiensis strains that contain Dipteran-specific cry genes from Ilha Bela (São Paulo, Brazil) soil samples. Brazilian Journal of Biology, 2012; 72(2): 243-247.

9. COUCH TL. Industrial fermentation and formulation of entomopathogenic bacteria. In: CHARLES JF. (Org.). Entomopathogenic bacteria: from laboratory to field applications. New York: Kluwer Academic Publishes, 2000; 297-316.

10. DULMAGE HT, et al. Guidelines for production of Bacillus thuringiensis H-14 and Bacillus sphaericus. Geneva. UNDP/World Bank/WHO, Steering Committee to Biological Control of Vectors, 1990; 59.

11. EL-KERSH TA. et al. Isolation and characterization of native Bacillus thuringiensis strains from Saudi Arabia with enhanced larvicidal toxicity against the mosquito vector Anopheles gambiae (sl). Parasites & vectors, 2016; 9(1): 647.

12. FERREIRA UM e CASTRO MC. Challenges for malaria elimination in Brazil. Malaria journal, 2016; 15(1): 284.

13. FLORES-SUAREZ AE. et al. Current status of the insecticide resistance in Aedes aegypti (Diptera: Culicidae) from Mexico. Insecticide resistance, 2016; 99-109.

14. GALZER ECW e AZEVEDO-FILHO WS. Use of Bacillus thuringiensis in biological pest control. Interdisciplinary Journal of Applied Science, 2016; 1(1): 13-16.

15. GLARE TR e O’CALLAGHAM M. Bacillus thuringiensis: biology, ecology and safety. Chichester: John Wiley and Sons, 2000; 1: 432.

16. GUO S, et al. Whole-genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants. Journal of industrial microbiology & biotechnology, 2015; 42(6): 925-937.

17. HECKEL DG. How do toxins from Bacillus thuringiensis kill insects? An evolutionary perspective. Archives of Insect Biochemistry and Physiology, 2020; 104: 21673.

18. IÇGEN Y, et al. Regulation of crystal protein biosynthesis by Bacillus thuringiensis: I. Effects of mineral elements and pH. Research in microbiology, 2002; 153(9): 599-604.

19. KONG F, et al. Semi-continuous lipid production and sedimentation of Scenedesmus sp. by metal ions addition in the anaerobic fermentation effluent. Energy Conversion and Management, 2020; 203: 112216.

20. LIMA-CAMARA TN. Emerging arboviruses and new challenges for public health in Brazil. Public Health Magazine, 2016; 50: 36.

21. LOBO KS, et al. Isolation and molecular characterization of Bacillus thuringiensis found in soils of the Cerrado region of Brazil, and their toxicity to Aedes aegypti larvae. Brazilian Journal of Entomology, 2018; 62(1): 5-12.

22. MALDONADO-BLANCO MG, et al. The effect of oxygen tension on the production of Bacillus thuringiensis subsp. israelensis active against Aedes aegypti larvae. World Journal of Microbiology and Biotechnology, 2003; 19(7): 671-674.

23. MOURÃO AHC. Influence and costs of different culture media for the production of Bacillus thuringiensis for pest control. Dissertation (Masters in Plant Biotechnology) -Federal University of Lavras, Lavras, 2017; 78.

24. MOYES CL, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS neglected tropical diseases, 2017; 11(7): 5625.

25. ÖZKAN M, et al. Nutritional and cultural parameters that influence the production of antidipteran delta-endotoxin. Microbiology Research, 2003; 154(1): 49-53.

26. PAN X, et al. Effect of Bacillus thuringiensis biomass and insecticidal activity by cultivation with vegetable wastes. Royal Society open science, 2021; 8(3):201564.

27. PANAROTTO C. Influence of operational parameters, protein sources and energy substrates on the cultivation of Bacillus thuringiensis var. Israeli. Dissertation (Master’s in Biotechnology) – University of Caxias do Sul, Caxias do Sul, 2006; 119.

28. PEARSON D e WARD OP. Effect of culture conditions on growth and sporulation of Bacillus thuringiensis subsp. israelensis and development of media for production of the protein crystal endotoxin. Biotechnology Letters, 1988; 10(7): 451-456.

29. PEÑA LC, et al. Mosquito Aedes spp. vector of important arboviruses: from classical to biotechnological control, a brief review. Valore Magazine, 2022; 7:7052.

30. PEREIRA EL e MARTINS BA. Biotechnological processes in the production of bioinsecticides doi. Vale do Rio Verde University Magazine, 2016; 14(2): 714-734.

31. POLANCZYK R e ALVES S. Bacillus thuringiensis: a brief review. Agrociencia-Sitio en Reparación, 2003; 7(2): 1-9.

32. RAYMOND B, et al. Quantifying the reproduction of Bacillus thuringiensis HD1 in cadavers and live larvae of Plutella xylostella. Journal of Invertebrate Pathology, New York, 2008; 98(3): 307-313.

33. SCOPEL W e ROZA-GOMES MF. Biological control programs in Brazil. Unoesc & Science -ACET, 2011; 2(2): 215-223.

34. SMITH DB, et al. Laboratory studies of viral adjuvants: formulation development. Journal of Economic Entomology, 1982; 75(1): 16-20.

35. SOARES-DA-SILVA J, et al. Molecular characterization of the gene profile of Bacillus thuringiensis Berliner isolated from Brazilian ecosystems and showing pathogenic activity against mosquito larvae of medical importance. Acta tropica, 2017; 176: 197-205.

36. VARGAS LDL, et al. Resistance of Aedes (Stegomyia) aegypti (Linnaeus, 1762) (Insecta, Diptera, Culicidae) populations to insecticides used for control: state of the art knowledge. Journal of Medical and Biological Sciences, 2022; 21(1): 98-116.

37. VIANA JL, et al. Isolates of Bacillus thuringiensis from Maranhão biomes with potential insecticidal action against Aedes aegypti larvae (Diptera, Culicidae). (AHEAD). Brazilian Journal of Biology, 2020; 81: 114-124.

38. VIEIRA-NETA MRA, et al. Strain of Bacillus thuringiensis from Restinga, toxic to Aedes (Stegomyia) aegypti (Linnaeus) (Diptera, Culicidae). (AHEAD). Brazilian Journal of Biology, 2020; 81: 872-880.