Triagem virtual de produtos naturais como potenciais inibidores da triosefosfato isomerase de Rhipicephalus microplus

##plugins.themes.bootstrap3.article.main##

Wallyson André dos Santos Bezerra
Paul A.M. Michels
Alexandra Martins Dos Santos Soares

Resumo

Objetivo: Neste estudo, o docking molecular de 332 produtos naturais selecionados do banco de dados ZINC15 foi realizado na estrutura tridimensional de R. microplus TIM usando o Molegro Virtual Docker. Métodos: As propriedades de absorção, distribuição, metabolismo, excreção e toxicidade (ADMET) dos melhores compostos foram previstas. Após o docking molecular, os 20 compostos com o menor MolDock Score, indicativo da maior afinidade prevista para R. microplus TIM, foram avaliados. Resultados: Cinquenta por cento são categorizados como alcaloides e aminoglicosídeos, 20% como dipeptídeos e terpenoides. Oitenta por cento compreendem compostos anticâncer e antimicrobianos. Paclitaxel, diritromicina, toposar, natamicina e cabazitaxel exibiram as maiores afinidades para R. microplus TIM, com pontuações MolDock de -171,258, -168,586, -149,368, -148,880 e -148,810, respectivamente. Conclusão: Expandir a pesquisa sobre a inibição de TIM e modificar os compostos estudados pode, portanto, levar à descoberta de novos acaricidas. As descobertas deste estudo aumentam nossa compreensão da inibição de TIM em carrapatos, confirmando sua drogabilidade como um alvo para compostos naturais e auxiliando no desenvolvimento de estratégias para melhor controle de carrapatos.

##plugins.themes.bootstrap3.article.details##

Como Citar
BezerraW. A. dos S., MichelsP. A., & SoaresA. M. D. S. (2024). Triagem virtual de produtos naturais como potenciais inibidores da triosefosfato isomerase de Rhipicephalus microplus. Revista Eletrônica Acervo Saúde, 24(12), e18225. https://doi.org/10.25248/reas.e18225.2024
Seção
Artigos Originais

Referências

1. ABDELMOHSEN UR, et al. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections. The Lancet Infectious Diseases. 2017; 17(2): 30-41.

2. AGWUNOBI DO, et al. A retrospective review on ixodid tick resistance against synthetic acaricides: implications and perspectives for future resistance prevention and mitigation. Pesticide Biochemistry Physiology. 2021; 173: 1-17.

3. ALIZADEH SR e EBRAHIMZADEH MA. O‐Glycoside quercetin derivatives: Biological activities, mechanisms of action, and structure–activity relationship for drug design, a review. Phytotherapy Research. 2022; 36(2): 778-807.

4. AWASTHI BP e MITRA K. In vitro leishmanicidal effects of the anti-fungal drug natamycin are mediated through disruption of calcium homeostasis and mitochondrial dysfunction. Apoptosis. 2018;23(7): 420-35.

5. BENAIM G, et al. Dronedarone, an amiodarone analog with improved anti-Leishmania mexicana efficacy. Antimicrobial agents chemotherapy. 2014; 58(4): 2295-303.

6. BEZERRA WAS, et al. Anonaine from Annona crassiflora inhibits glutathione S-transferase and improves cypermethrin activity on Rhipicephalus (Boophilus) microplus (Canestrini, 1887). Experimental Parasitology. 2022; 243: 1-8.

7. BIANCHI V, et al. Identification of binding pockets in protein structures using a knowledge-based potential derived from local structural similarities. BioMed Central Bioinformatics. 2012; 13: 1-13.

8. BRAZ V, et al. Inhibition of energy metabolism by 3-bromopyruvate in the hard tick Rhipicephalus microplus. Comparative Biochemistry Physiology Part C: Toxicology Pharmacology. 2019; 218: 55-61.

9. CAO Y, et al. Study on the Antifungal Activity and Potential Mechanism of Natamycin against Colletotrichum fructicola. Journal of Agricultural Food Chemistry. 2023; 71(46): 17713-22.

10. CARDOSO AS, et al. Terpenes on Rhipicephalus (Boophilus) microplus: Acaricidal activity and acetylcholinesterase inhibition. Veterinary parasitology. 2020; 280: 1-5.

11. CARROLL JF, et al. Repellency of two terpenoid compounds isolated from Callicarpa americana (Lamiaceae) against Ixodes scapularis and Amblyomma americanum ticks. Experimental applied acarology. 2007; 41: 215-24.

12. CHOUBEY SK e JEYARAMAN J. A mechanistic approach to explore novel HDAC1 inhibitor using pharmacophore modeling, 3D-QSAR analysis, molecular docking, density functional and molecular dynamics simulation study. Journal of Molecular Graphics Modelling. 2016; 70: 54-69.

13. DINARVAND M e SPAIN M. Identification of bioactive compounds from marine natural products and exploration of Structure-Activity Relationships (SAR). Antibiotics. 2021; 10(3): 1-24.

14. EBETINO FH, et al. Bisphosphonates: The role of chemistry in understanding their biological actions and structure-activity relationships, and new directions for their therapeutic use. Bone. 2022; 156: 116289.

15. FASAN R, et al. Structure–activity studies in a family of β‐Hairpin protein epitope mimetic inhibitors of the p53–HDM2 protein–protein interaction. Chemistry biology Chemistry. 2006; 7(3): 515-26.

16. GANESAN M, et al. Design, synthesis, α-amylase inhibition and in silico docking study of novel quinoline bearing proline derivatives. Journal of Molecular Structure. 2020; 1208: 1-51.

17. GONZÁLEZ-MORALES LD, et al. Triose phosphate isomerase structure-based virtual screening and in vitro biological activity of natural products as Leishmania mexicana inhibitors. Pharmaceutics. 2023; 15(8): 1-17.

18. GRISI L, et al. Reassessment of the potential economic impact of cattle parasites in Brazil. Revista Brasileira de Parasitologia Veterinária. 2014; 23: 150-6.

19. JONSSON N. The productivity effects of cattle tick (Boophilus microplus) infestation on cattle, with particular reference to Bos indicus cattle and their crosses. Veterinary parasitology. 2006; 137(1-2): 1-10.

20. JUÁREZ-SALDIVAR A, et al. Virtual screening of fda-approved drugs against triose phosphate isomerase from Entamoeba histolytica and Giardia lamblia identifies inhibitors of their trophozoite growth phase. International Journal of Molecular Sciences. 2021; 22(11): 1-8.

21. KAUR R e KUMAR K. Synthetic and medicinal perspective of quinolines as antiviral agents. European Journal of Medicinal Chemistry. 2021; 215: 1-39.

22. KHANNA C, et al. A review of paclitaxel and novel formulations including those suitable for use in dogs. Journal of veterinary internal medicine. 2015; 29(4): 1006-12.

23. KIAMETIS AS, et al. Potential acetylcholinesterase inhibitors: molecular docking, molecular dynamics, and in silico prediction. Journal of molecular modeling. 2017; 23: 1-1.

24. KLAFKE G, et al. Multiple resistance to acaricides in field populations of Rhipicephalus microplus from Rio Grande do Sul state, Southern Brazil. Ticks tick-borne diseases. 2017; 8(1): 73-80.

25. KUBINYI H. Chemical similarity and biological activities. Journal of the Brazilian Chemical Society. 2002; 13(6): 717-26.

26. KUMAR K, et al. Cloning, overexpression and characterization of Leishmania donovani triosephosphate isomerase. Experimental parasitology. 2012; 130(4): 430-6.

27. KURKCUOGLU Z, et al. How an inhibitor bound to subunit interface alters triosephosphate isomerase dynamics. Biophysical Journal. 2015; 109(6): 1169-78.

28. KWANG LS. Editor In silico high-throughput screening for ADME/Tox properties: PreADMET program. Abstr Conf Comb Chem Jpn, 2005.

29. LEESON PD e DAVIS AM. Time-related differences in the physical property profiles of oral drugs. Journal of medicinal chemistry. 2004; 47(25): 6338-48.

30. LIANG N, et al. Characterization and evaluation of a new triosephosphate isomerase homologue from Haemaphysalis longicornis as a candidate vaccine against tick infection. Ticks Tick-borne Diseases. 2022; 13(4): 1-7.

31. LIMA HG, et al. Anti-tick effect and cholinesterase inhibition caused by Prosopis juliflora alkaloids: in vitro and in silico studies. Revista Brasileira de Parasitologia Veterinária. 2020; 29: 1-15.

32. LIPINSKI CA, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews. 1997; 23(1-3): 3-25.

33. LIU R, et al. Research progress on the biological activities of metal complexes bearing polycyclic aromatic hydrazones. Molecules. 2022; 27(23): 1-56.

34. LIU Z, et al. Geometrical Preferences of the Hydrogen Bonds on Protein− Ligand Binding Interface Derived from Statistical Surveys and Quantum Mechanics Calculations. Journal of Chemical Theory Computation. 2008; 4(11): 1959-73.

35. MALAK N, et al. Density Functional Theory Calculations and Molecular Docking Analyses of Flavonoids for Their Possible Application against the Acetylcholinesterase and Triose-Phosphate Isomerase Proteins of Rhipicephalus microplus. Molecules. 2023; 28(8): 1-20.

36. MARQUES R, et al. Climate change implications for the distribution of the babesiosis and anaplasmosis tick vector, Rhipicephalus (Boophilus) microplus. Veterinary research. 2020; 51: 1-10.

37. MIRABALLES C, et al. Rhipicephalus microplus, babesiosis and anaplasmosis in Uruguay: current situation and control or elimination programs on farms. Experimental Applied Acarology. 2019; 78: 579-93.

38. NÁJERA H, et al. Thermodynamic characterization of yeast triosephosphate isomerase refolding: insights into the interplay between function and stability as reasons for the oligomeric nature of the enzyme. Biochemical Journal. 2003; 370(3): 785-92.

39. NICARETTA JE, et al. Selective versus strategic control against Rhipicephalus microplus in cattle: A comparative analysis of efficacy, animal health, productivity, cost, and resistance management. Veterinary Parasitology. 2023; 321: 1-16.

40. O’SHEA R e MOSER HE. Physicochemical properties of antibacterial compounds: implications for drug discovery. Journal of medicinal chemistry. 2008; 51(10): 2871-8.

41. OBAID MK, et al. Acaricides resistance in ticks: selection, diagnosis, mechanisms, and mitigation. Frontiers in Cellular Infection Microbiology. 2022; 12: 1-20.

42. OLIVARES-ILLANA V, et al. Perturbation of the dimer interface of triosephosphate isomerase and its effect on Trypanosoma cruzi. PLoS neglected tropical diseases. 2007; 1(1): 1-8.

43. OLIVER C e TIMSON DJ. In silico prediction of the effects of mutations in the human triose phosphate isomerase gene: towards a predictive framework for TPI deficiency. European Journal of Medical Genetics. 2017; 60(6): 289-98.

44. PENSEL PE, et al. In vitro effect of 5-fluorouracil and paclitaxel on Echinococcus granulosus larvae and cells. Acta tropica. 2014; 140: 1-9.

45. PICHKUR EB, et al. Insights into the improved macrolide inhibitory activity from the high-resolution cryo-EM structure of dirithromycin bound to the E. coli 70S ribosome. RNA. 2020; 26(6): 715-23.

46. POUPAERT J, et al. 2 (3H)-benzoxazolone and bioisosters as “privileged scaffold” in the design of pharmacological probes. Current medicinal chemistry. 2005; 12(7): 877-85.

47. RAJALAKSHMI R, et al. In silico studies: Physicochemical properties, drug score, toxicity predictions and molecular docking of organosulphur compounds against Diabetes mellitus. Journal of Molecular Recognition. 2021; 34(11): 1-21.

48. RUYCK J, et al. Molecular docking as a popular tool in drug design, an in silico travel. Advances Applications in Bioinformatics Chemistry. 2016: 1-11.

49. SALONEN LM, et al. Aromatic rings in chemical and biological recognition: energetics and structures. Angewandte Chemie International Edition. 2011; 50(21): 4808-42.

50. SAPORITI T, et al. Phenotypic and Target-Directed Screening Yields New Acaricidal Alternatives for the Control of Ticks. Molecules. 2022; 27(24): 1-14.

51. SARAMAGO L, et al. Novel and selective Rhipicephalus microplus triosephosphate isomerase inhibitors with acaricidal activity. Veterinary Sciences. 2018; 5(3): 1-19.

52. SELLES SMA, et al. Acaricidal and repellent effects of essential oils against ticks: a review. Pathogens. 2021; 10(11): 1-17.

53. SHAMSUDIN NF, et al. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules. 2022; 27(4): 1-43.

54. SILVA GD, et al. In vitro and in silico studies of the larvicidal and anticholinesterase activities of berberine and piperine alkaloids on Rhipicephalus microplus. Ticks Tick-borne Diseases. 2021; 12(2): 1-6.

55. TÉLLEZ-VALENCIA A, et al. Inactivation of triosephosphate isomerase from Trypanosoma cruzi by an agent that perturbs its dimer interface. Journal of molecular biology. 2004; 341(5): 1355-65.

56. VÁZQUEZ-JIMÉNEZ LK, et al. Ligand-based virtual screening and molecular docking of benzimidazoles as potential inhibitors of triosephosphate isomerase identified new trypanocidal agents. International Journal of Molecular Sciences. 2022; 23(17): 1-27.

57. WADOOD A, et al. In-silico drug design: An approach which revolutionarised the drug discovery process. Drug design and delivery. 2013;1(1):1-4.

58. WALDMAN J, et al. Putative target sites in synganglion for novel ixodid tick control strategies. Ticks Tick-borne Diseases. 2023; 14(3): 1-12.

59. YAN-HUA Y, et al. Research progress on the source, production, and anti-cancer mechanisms of paclitaxel. Chinese journal of natural medicines. 2020; 18(12): 890-7.