Uma visão geral dos dispositivos robóticos para reabilitação do cotovelo
##plugins.themes.bootstrap3.article.main##
Resumo
Objetivo: Identificar desenvolvimentos relacionados a dispositivos robóticos para reabilitação de cotovelo e disponibilizá-los à comunidade científica para possíveis desenvolvimentos futuros. Levantamento bibliográfico. Métodos: A revisão integrativa foi realizada nas bases de dados e utilizou uma combinação de palavras-chave para identificar os artigos relevantes. Os resumos foram lidos e aqueles que foram qualificados tiveram sua leitura completa, que fizeram parte deste trabalho. Resultados: Um total de 976 registros foram identificados por meio das buscas nas bases de dados. Entre os artigos selecionados, 12 eram duplicados e excluídos imediatamente, resultando em 964 estudos para avaliação de elegibilidade. As revisões de título resultaram na exclusão de 879 artigos, os outros 85 artigos foram submetidos à revisão do resumo. Após todas as fases de seleção e extração, apenas 53 estudos atenderam aos critérios de inclusão e foram incluídos no presente estudo. Considerações finais: O cenário analisado mostrou uma grande evolução nas características dos dispositivos robóticos para reabilitação de cotovelo. O uso de software para simulação auxiliou muito nas simulações e definições dos dispositivos. Entretanto, ainda são grandes os esforços no dimensionamento dos atuadores e na escolha da melhor relação potência/peso para tornar os dispositivos mais leves e facilitar sua portabilidade.
##plugins.themes.bootstrap3.article.details##
Copyright © | Todos os direitos reservados.
A revista detém os direitos autorais exclusivos de publicação deste artigo nos termos da lei 9610/98.
Reprodução parcial
É livre o uso de partes do texto, figuras e questionário do artigo, sendo obrigatória a citação dos autores e revista.
Reprodução total
É expressamente proibida, devendo ser autorizada pela revista.
Referências
2. AMBROSINI E, et al. A Myocontrolled Neuroprosthesis Integrated with a Passive Exoskeleton to Support Upper Limb Activities. Journal of Electromyography and Kinesiology, 2014; 307–17.
3. BACKUS D, et al. Assisted Movement with Proprioceptive Stimulation Reduces Impairment and Restores Function in Incomplete Spinal Cord Injury. Archives of Physical Medicine and Rehabilitation, 2014; 95(8): 1447–53.
4. BERTOMEU-MOTOS A, et al. Human Arm Joints Reconstruction Algorithm in Rehabilitation Therapies Assisted by End-Effector Robotic Devices. Journal of NeuroEngineering and Rehabilitation, 2018; 15(1): 1–11.
5. BUONGIORNO D, et al. A Novel 3 DoF WRist Exoskeleton With Tendon-Driven Differential Transmission for Neuro-Rehabilitation and Teleoperation, in IEEE Robotics and Automation Letters, vol. 3, no. 3, 2018; pp. 2152-2159.
6. CHEN J e LUM OS. Pilot Testing of the Spring Operated Wearable Enhancer for Arm Rehabilitation (Spring Wear). Journal of NeuroEngineering and Rehabilitation, 2018; 15(1): 1–11.
7. CHEN W, et al. Mechanical Design and Kinematic Modeling of a Cable-Driven Arm Exoskeleton Incorporating Inaccurate Human Limb Anthropomorphic Parameters. Sensors 2019; 19, 446.
8. COPACI D, et al. SMA Based Elbow Exoskeleton for Rehabilitation Therapy and Patient Evaluation. IEEE, 2019.
9. COPACI D, et al. New Design of a Soft Robotics Wearable Elbow Exoskeleton Based on Shape Memory Alloy Wire Actuators. Applied Bionics and Biomechanics, 2017.
10. DINH BK, et al. Adaptive Backlash Compensation in Upper Limb Soft Wearable Exoskeletons. Robotics and Autonomous Systems, 2017; 92: 173–86.
11. FEIGIN VL, et al. Global and Regional Burden of Stroke during 1990-2010: Findings from the Global Burden of Disease Study 2010.” Lancet, 2014; 383(9913): 245–54.
12. GOPURA RARC, et al. Developments in hardware systems of active upper-limb exoskeleton robots: A review. Robots and Autonomous Systems, 2016; 75: 203-220
13. IGLESIA D, et al. Connected Elbow Exoskeleton System for Rehabilitation Training Based on Virtual Reality and Context-Aware. Sensors 2020; 20, 858.
14. JOBBÁGY B, et al. Robotic Arm with Artificial Muscles in Rehabilitation.” Procedia Engineering, 2014; 96: 195–202
15. KLAMROTH-MARGANSKA V, et al. Three-Dimensional, Task-Specific Robot Therapy of the Arm after Stroke: A Multicentre, Parallel-Group Randomized Trial. The Lancet Neurology, 2014; 13(2): 159–66.
16. KREBS HI EIICHI S e NEVILLE H. Robotic Therapy and the Paradox of the Diminishing Number of Degrees of Freedom. Physical Medicine and Rehabilitation Clinics of North America, 2015; 26(4): 691–702.
17. de KRUIF BJ, et al. Simulation Architecture for Modelling Interaction Between User and Elbow-Articulated Exoskeleton. Journal of Bionic Engineering. 2017; 14(4): 706–15.
18. KUBOTA S, et al. Safety and efficacy of robotic elbow training using the upper limb single-joint hybrid assistive limb combined with conventional rehabilitation for bilateral obstetric brachial plexus injury with co-contraction: a case report. The Journal of Physical Therapy Science, 2017; 31: 206–210
19. KUTLU M, et al. A Home-Based FES System for Upper-Limb Stroke Rehabilitation with Iterative Learning Control.” IFAC-Papers Online, 2017; 50(1): 12089–94.
20. LIN CH, et al. Validity and Reliability of a Novel Device for Bilateral Upper Extremity Functional Measurements.” Computer Methods and Programs in Biomedicine, 2014; 114(3): 315–23.
21. LIU K, et al. Postural Synergy Based Design of Exoskeleton Robot Replicating Human Arm Reaching Movements.” Robotics and Autonomous Systems, 2018; 99: 84–96.
22. MACIEJASZ P, et al. A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 2014; 9;11:3.
23. MANCISIDOR A, et al. Kinematical and Dynamical Modeling of a Multipurpose Upper Limbs Rehabilitation Robot. Robotics and Computer-Integrated Manufacturing, 2018; 49: 374–87.
24. MANNA SK e VENKETESH ND. A Mechanism for Elbow Exoskeleton for Customized Training.” IEEE International Conference on Rehabilitation Robotics, 2017; 1597–1602.
25. MOHAMADDAN S, et al. Development of Upper Limb Rehabilitation Robot Device for Home Setting.” Procedia Computer Science, 2015; 76(Iris): 376–80.
26. MOCHIZUKI G, et al. Movement kinematics and proprioception in post-stroke spasticity: assessment using the Kinarm robotic exoskeleton”. Journal of Neuro Engineering and Rehabilitation, 2019; 16:146.
27. MOHER D et al. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement.” Systematic Reviews 4(1): 148–60.
28. NEMATOLLAHI M. Application of NiTi in Assistive and Rehabilitation Devices: A Review”. Bioengineering (Basel). 2019; 6(2): 37.
29. OGUNTOSIN V, et al. Development of a Wearable Assistive Soft Robotic Device for Elbow Rehabilitation. IEEE International Conference on Rehabilitation Robotics, 2015; 747–52.
30. PONS JL. Wearable Robots: Biomechatronic Exoskeletons, John Wiley & Sons, 2008.
31. RONG W, et al. A Neuromuscular Electrical Stimulation (NMES) and Robot Hybrid System for Multi-Joint Coordinated Upper Limb Rehabilitation after Stroke. Journal of NeuroEngineering and Rehabilitation, 2017; 14(1): 1–13.
32. SAITA K, et al. Combined Therapy Using Botulinum Toxin A and Single-Joint Hybrid Assistive Limb for Upper-Limb Disability Due to Spastic Hemiplegia. Journal of the Neurological Sciences, 2017; 373: 182–87.
33. SCHARDT C. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Medical Informatics and Decision Making, 2016.
34. SIN M, et al. Electromyographic Analysis of Upper Limb Muscles during Standardized Isotonic and Isokinetic Robotic Exercise of Spastic Elbow in Patients with Stroke. Journal of Electromyography and Kinesiology, 2014; 24(1): 11–17.
35. TANIGUCHI K, et al. Research of Rehabilitation Aid System by DOF Constrainable Mechanism and NMES for Hemiplegic Upper Limbs. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2015; 139-44.
36. TRIGILI E, et. al. Design and experimental characterization of a shoulder-elbow exoskeleton with compliant joints for post-stroke rehabilitation. in IEEE/ASME Transactions on Mechatronics, 2017; vol. 24, no. 4, pp. 1485-1496.
37. VITIELLO N, et al., Functional Design of a Powered Elbow Orthosis Toward its Clinical Employment, in IEEE/ASME Transactions on Mechatronics, 2016; vol. 21, no. 4, pp. 1880-1891.
38. von WERDER SCFA e DISSELHORST-KLUG C. The Role of Biceps Brachii and Brachioradialis for the Control of Elbow Flexion and Extension Movements. Journal of Electromyography and Kinesiology, 2016; 28: 67–75.
39. WU Q, et al. Design and Fuzzy Sliding Mode Admittance Control of a Soft Wearable Exoskeleton for Elbow Rehabilitation. in IEEE Access, 2019; vol. 6, pp. 60249-60263.
40. ZHOU L, YIBIN L e SHAOPING B. A Human-Centered Design Optimization Approach for Robotic Exoskeletons through Biomechanical Simulation. Robotics and Autonomous Systems, 2017; 91: 337–47.