Atividade antimicrobiana dos extratos etanólicos de especiarias brasileiras

##plugins.themes.bootstrap3.article.main##

José Eduardo Souza Echeverria
Pamella Fukuda de Castilho
Cleison da Rocha Leite
Kelly Mari Pires de Oliveira

Resumo

Objetivo: Avaliar o potencial antimicrobiano de extratos etanólicos de oito especiarias brasileiras: Dipteryx alata (baru), Dipteryx odorata (cumaru), Amburana cearensis (imburana-de-odor), Hymenaea stigonocarpa (jatobá), Renealmia exaltata (pacová), Xylopia aromatica (pimenta-de-macaco), Capsicum frutescens (pimenta malagueta) e Licaria puchury-major (puxuri). Métodos: Os extratos foram testados nas concentrações de 1,96 a 1000 μg/mL frente bactérias Gram-positivas (Bacillus cereus, Staphylococcus aureus), Gram-negativas (Klebsiella pneumoniae, Escherichia coli) e leveduras (Candida albicans, Candida krusei, Candida glabrata, Candida parapsilosis, Candida tropicalis) por microdiluição em caldo para determinar a concentração inibitória mínima (CIM). Resultados: O extrato de H. stigonocarpa inibiu todas as bactérias e C. albicans em 1000 μg/mL. Na mesma concentração, o extrato de L. puchury-major inibiu B. cereus e E. coli, enquanto o de D. alata inibiu C. albicans e C. krusei. Nenhum extrato apresentou atividade bactericida ou fungicida, sugerindo ação bacteriostática e fungistática. Conclusão: O potencial antimicrobiano das três espécies indica atividade moderada. O estudo destaca a relevância dessas plantas no contexto brasileiro e seu valor potencial para a indústria alimentícia e a saúde pública, reforçando a importância de continuar pesquisando suas propriedades antimicrobianas

##plugins.themes.bootstrap3.article.details##

Como Citar
EcheverriaJ. E. S., CastilhoP. F. de, LeiteC. da R., & OliveiraK. M. P. de. (2025). Atividade antimicrobiana dos extratos etanólicos de especiarias brasileiras. Revista Eletrônica Acervo Saúde, 25, e18574. https://doi.org/10.25248/reas.e18574.2025
Seção
Artigos Originais

Referências

1. ABUBAKAR AR, HAQUE M. Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. Journal of Pharmacy and Bioallied Sciences, 2020; 12(1): 1.

2. AKULLO JO, et al. Effect of aqueous and organic solvent extraction on in-vitro antimicrobial activity of two varieties of fresh ginger (Zingiber officinale) and garlic (Allium sativum). Heliyon, 2022; 8(9): e10457.

3. BAJER T, et al. Use of simultaneous distillation-extraction, supercritical fluid extraction and solid-phase microextraction for characterisation of the volatile profile of Dipteryx odorata (Aubl.) Willd. Industrial Crops and Products, 2018; 119: 313–321.

4. BONIFACE PK, et al. Current state of knowledge on the traditional uses, phytochemistry, and pharmacology of the genus Hymenaea. Journal of Ethnopharmacology, 2017; 206: 193-223.

5. BORAH P, et al. Traditional wisdom in modern medicine: unveiling the anticancer efficacy of Northeastern Indian spices. Journal of Herbal Medicine, 2024; 46: 100896.

6. CLSI. M27-A3, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard, third ed. Clinical and Laboratory Standards Institute, Wayne, PA, USA, 2008.

7. CLSI. M7-A9, Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved Standard, ninth ed. Clinical and Laboratory Standards Institute, Wayne, PA, USA, 2012.

8. CIPRIANO J, et al. The genus Hymenaea and its most important species in economic and medicinal point of view for Brazil. Research Notebook, Biology series, 2014; 26(2).

9. COSTA A. Os 12 Benefícios da Pimenta Malagueta Para Saúde. Portal Saúde Dica, 2017 (atualizado em 2018). Disponível em: https://www.saudedica.com.br/os-12-beneficios-da-pimenta-malagueta-para-saude. Acesso em: 17 ago. 2023.

10. CUCHET A, et al. Authentication of Tonka beans extracts (Dipteryx odorata) using LC-UV/MS, GC-MS and multi element (13C, 2H and 18O) bulk specific isotope analysis. Industrial Crops and Products, 2024; 209: 118038.

11. DIMECH GS, et al. Phytochemical and Antibacterial Investigations of the Extracts and Fractions from the Stem Bark of Hymenaea stigonocarpa Mart. ex Hayne and Effect on Ultrastructure of Staphylococcus aureus Induced by Hydroalcoholic Extract. The Scientific World Journal, v. 2013, 2013.

12. DJIAZET S, et al. Investigation of physicochemical properties, nutritional status, and volatile compounds profiling of four underutilized spices of Cameroon origin. Food Chemistry Advances, 2023; 3: 100465.

13. FERREIRA RS, et al. Amburana cearensis seed extract stimulates astrocyte glutamate homeostatic mechanisms in hippocampal brain slices and protects oligodendrocytes against ischemia. BMC Complementary Medicine and Therapies, 2023; 23: 154.

14. FETZER DEL, et al. Lipids and coumarin extraction from cumaru seeds (Dipteryx odorata) using sequential supercritical CO2+solvent and pressurized ethanol. The Journal of Supercritical Fluids, 2022; 188: 105688.

15. GALVÃO F, et al. Chemical composition and effects of ethanolic extract and gel of Cochlospermum regium (Schrank) Pilg. Leaves on inflammation, pain, and wounds. Journal of Ethnopharmacology, 2023; 302: 115881.

16. GRAÇA RR, et al. Avaliação da Atividade Antioxidante, Citotóxica e Antimicrobiana da Espécie Amazônica Licaria puchury-major (Mart.) Kosterm. Universidade do Estado do Amazonas - UEA, 2010; 31 ago.

17. JACOB MCM, MEDEIROS MF, ALBUQUERQUE UP. Biodiverse food plants in the semiarid region of Brazil have unknown potential: A systematic review. PLoS ONE, 2020; 15(5): e0230936.

18. KAUR S, et al. How do plants defend themselves against pathogens—Biochemical mechanisms and genetic interventions. Physiology and Molecular Biology of Plants, 2022; 28(2): 485–504.

19. KIRMANI F, et al. Phytochemical investigation and antibacterial activity of Curcuma longa against multi-drug resistant bacteria. South African Journal of Botany, 2024; 164: 137–145.

20. LANA MM, et al. Pimenta malagueta. Portal Embrapa, 2021. Disponível em: https://www.embrapa.br/en/hortalica-nao-e-so-salada/pimenta-malagueta. Acesso em: 17 ago. 2023.

21. LIMA DC, et al. A review on Brazilian baru plant (Dipteryx alata Vogel): morphology, chemical composition, health effects, and technological potential. Future Foods, 2022; 5: 100146.

22. LONE AS, RAVINDRAN KC, JEANDET P. Evaluation of antimicrobial activity and bioactive compound analysis of Verbascum thapsus L. A folklore medicinal plant. Phytomedicine Plus, 2024; 4(3): 100560.

23. LORRENZI H, et al. Plantas medicinais no Brasil: Nativas e exóticas. 2° edição. Nova Odessa, SP: Instituto Plantarum, 2008.

24. MAPEKA T, et al. Enhancing the antimicrobial efficacy of common herbs and spices through an optimized polyherbal approach. South African Journal of Botany, 2024; 164: 91–99.

25. MELCHIOR C, et al. Chemical composition and thermal properties of commercial essential oils and their antimicrobial and antioxidant activities. Research, Society and Development, 2023; 12(1): e15412139694.

26. MORAES MLL, et al. Experimental mixture design as a tool to evaluate coumarin (1,2-benzopyrone) extraction from Dipteryx odorata seeds. Journal of Pharmaceutical and Biomedical Analysis, 2022; 210: 114586.

27. NEGRELLE RR, B. Renealmia L. f.: aspectos botânicos, ecológicos, farmacológicos e agronômicos. Rev. Bras. Pl. Med., 2015; 17(2): 274-290.

28. OLIVEIRA VB, et al. Chemical composition and inhibitory activities on dipeptidyl peptidase IV and pancreatic lipase of two underutilized species from the Brazilian Savannah: Oxalis cordata A.St.-Hil. and Xylopia aromatica (Lam.) Mart. Food Research International, 2018; 105: 989–995.

29. OLIVEIRA VS, et al. Aroeira fruit (Schinus terebinthifolius Raddi) as a natural antioxidant: Chemical constituents, bioactive compounds and in vitro and in vivo antioxidant capacity. Food Chemistry, 2020; 315: 126274.

30. PIMENTEL FC, et al. Chemical composition and antifungal activity of the essential oil from the Hymenaea stigonocarpa Mart. Ex Hayne (jatobá-do-cerrado) fruit peel. Natural Product Research, 2023; 38(11): 1-5.

31. PUEBLA P, et al. Chemical Constituents of the Bark of Dipteryx alata Vogel, an Active Species against Bothrops jararacussu Venom. Molecules, 2010; 15(11): 8193–8204.

32. SANTOMAURO F, et al. The antimicrobial effects of three phenolic extracts from Rosmarinus officinalis L., Vitis vinifera L. and Polygonum cuspidatum L. on food pathogens. Natural Product Research, 2018; 32(22): 2639–2645.

33. SANTOS FB, et al. Antimicrobial activity of hydroalcoholic extracts from genipap, baru and taruma. Ciência Rural, 2017; 47(8).

34. SILVA AA, et al. Supplementation with Jatobá-do-cerrado flour (Hymenaea stigonocarpa Mart.) decreases hypothalamic inflammation and improves obesity parameters in rats on a high-fat diet. Journal of Neuroimmunology, 2023; 385: 578237.

35. SILVA GFA, et al. Jatobá (Hymenaea stigonocarpa) pulp films: Properties, antioxidant potential and biodegradability. Food Packaging and Shelf Life, 2022; 34: 100923.

36. SILVEIRA ZS, et al. Phytochemistry and Biological Activities of Amburana cearensis (Allemão) ACSm. Molecules, 2022; 27(2): 505.

37. TSHABALALA R, et al. Effect of Clove (Syzygium aromaticum) spice as microbial inhibitor of resistant bacteria and Organoleptic Quality of meat. Saudi Journal of Biological Sciences, 2021; 28(7): 3855–3863.

38. VIANA HNAC, et al. Characterization of baru (Dipteryx alata Vog.) and application of its agro-industrial by-product in the formulation of cookies. Journal of Agriculture and Food Research, 2023; 12: 100577.

39. VIEIRA MAR, et al. Geographical influences on the chemical composition and antifungal activity of Xylopia aromatica (Lam.) Mart. leaf essential oil. South African Journal of Botany, v. 160, p. 209–218, 1 set. 2023.

40. XAVIER JKA, et al. Chemical Diversity and Biological Activities of Essential Oils from Licaria, Nectrandra and Ocotea Species (Lauraceae) with Occurrence in Brazilian Biomes. Biomolecules, 2020; 10(6).

41. XEDZRO C, et al. Antibacterial efficacies and time-kill kinetics of indigenous Ghanaian spice extracts against Listeria monocytogenes and some other food-borne pathogenic bacteria. Microbiological Research, 2022; 258: 126980.