Progressos recentes e aplicações clínicas de biomateriais avançados em cirurgia plástica
##plugins.themes.bootstrap3.article.main##
Resumo
Objetivo: Avaliar os progressos recentes e as aplicações clínicas de biomateriais avançados na cirurgia plástica, explorando os benefícios, desafios, e as implicações para a prática cirúrgica. Métodos: Revisão integrativa, conduzida com análise completa de 16 artigos no idioma inglês, publicados no período de 2023 a 2024, que abordam o uso de diferentes biomateriais avançados utilizados em procedimentos cirúrgicos, em busca de constatar a melhoria dos resultados clínicos e estéticos. Resultados: Evidenciou-se avanços na reconstrução tecidual e tratamento de feridas, com destaque para a eficácia de implantes tridimensionais, transplante de retalhos e infusão contínua de vancomicina. Materiais inovadores, como biotintas e membranas bicamadas, mostraram boa biocompatibilidade e potencial na regeneração de tecidos. Curativos inteligentes e bioimpressão 3D também se destacam, apesar de ainda enfrentarem desafios. No geral, essas inovações apontam para melhorias significativas na cirurgia reconstrutiva e na medicina regenerativa. Considerações finais: Essas inovações em biomateriais oferecem um benefício relevante na cirurgia plástica, em cirurgias reconstrutivas e em melhora do pós-operatório, porém é necessários mais ensaios clínicos de diversos biomateriais antes de uma aplicação abrangente.
##plugins.themes.bootstrap3.article.details##
Copyright © | Todos os direitos reservados.
A revista detém os direitos autorais exclusivos de publicação deste artigo nos termos da lei 9610/98.
Reprodução parcial
É livre o uso de partes do texto, figuras e questionário do artigo, sendo obrigatória a citação dos autores e revista.
Reprodução total
É expressamente proibida, devendo ser autorizada pela revista.
Referências
2. BUSHONG EE, et al. To acellular dermal matrix or not to acellular dermal matrix? — outcomes of pre-pectoral prosthetic reconstruction after nipple-sparing mastectomy with and without acellular dermal matrix. Gland Surg, 2024;13(6): 885-896.
3. CHENG L, et al. Fabrication of pH-stimuli hydrogel as bioactive materials for wound healing applications. Heliyon, 2024; 1: 1-13.
4. CIANCIOSI A, et al. Flexible Allyl-Modified Gelatin Photoclick Resin Tailored for Volumetric Bioprinting of
5. FARAHANI PK. Application of Tissue Engineering and Biomaterials in Nose Surgery. JPRAS Open. 2023; 40: 262-272.
6. FRANCESCO DF, et al. The evolution of current concept of the reconstructive ladder in plastic surgery: the emerging role of translational medicine. Cells MDPI, 2023; 12: 2567.
7. GRANDJEAN T, et al. Towards optimized tissue regeneration: a new 3D printable bioink of alginate/cellulose hydrogel loaded with thrombocyte concentrate. Frontiers in Bioengineering and Biotechnology, 2024; 12: 1363380.
8. JAMAL M, et al. Development of Biocompatible Electrospun PHBV-PLLA Polymeric Bilayer Composite Membranes for Skin Tissue Engineering Applications Molecules, 2024; 29: 2049.
9. JESSOP ZM, et al. The challenge for reconstructive surgeons in the twenty-first century: manufacturing tissue-engineered solutions. Frontiers in Surgery, 2015; 2(52).
10. KAUKE-NAVARRO M, et al. Balancing beauty and science: a review of facial implant materials in craniofacial surgery. Frontiers in Surgery, 2024; 11: 1348140.
11. LI H, et al. Recent progress and clinical applications of advenced biomaterials in cosmetic surgery. Regenerative biomaterials, 2023; 10: 5.
12. LI M, et al. Smart and versatile biomaterials for cutaneous wound healing. Biomaterials Research, 2023; 27: 87.
13. LIU Y, et al. Application and progress of new technologies and new materials in the treatment of pathological scar. Frontiers in Chemistry, 2024; 1(12): 1389399.
14. Matrices for Soft Tissue Engineering. Advanced Healthcare Materials, 2023; 12: 2300977.
15. MIRSKY NA, et al. Three-Dimensional Bioprinting: A Comprehensive Review for Applications in Tissue Engineering and Regenerative Medicine. Bioengineering, 2024; 1: 1-41.
16. SINGH TS, et al. The Utility of 3D Printing for Surgical Planning and Patient-Specific Implant Design in Maxillofacial Surgery: A Narrative Review. Cureus, 2023; 15(11): 48242.
17. SLAVIN BV, et al. 3D Printing Applications for Craniomaxillofacial Reconstruction: A Sweeping Review. ACS Biomaterials Science & Engineering, 2023; 9(12): 6586-6609.
18. SONG L e LIU X. Evaluating the therapeutic and reconstructive efficacy of flap transplantation techniques in managing nasal tissue deficiency resulting from post-rhinoplasty surgical infections. Int Wound J. 2024; 21(2): 14566.
19. SONG Y, et al. Biomaterials combined with ADSCs for bone tissue engineering: current advances and applications. Regenerative Biomaterials, 2023; 10: 83.
20. SYSTERMANS S, et al. An innovative 3D hydroxyapatite patient-specific implant for maxillofacial bone reconstruction: A case series of 13 patients. Journal of Cranio-Maxillo-Facial Surgery, 2024; 52: 420-431.
21. WANG L, et al. Outcomes following the excision of sarcoma and wall reconstruction using 3D printed implant. iScience, 2024; 27: 108757.
22. WANG P, et al. Emerging trends in the application of hydrogel-based biomaterials for enhanced wound healing: A literature review. International journal of biological macromolecules,2023; 261(1): 129300.
23. WANG Z, et al. Tropoelastin modulates systemic and local tissue responses to enhance wound healing. Elsevier, 2024; 184: 54-67.
24. WU SS, et al. Upper Extremity Wounds Treated with Biodegradable Temporizing Matrix versus Collagen-Chondroitin Silicone Bilayer. Journal of Hand and Microsurgery, 2022; 9743227.
25. WU Y, et al. Autophagy-modulating biomaterials: multifunctional weapons to promote tissue regeneration. Cell Commun Signal,2024; 22(124).