Tomografia Computadorizada na detecção de doenças cardiovasculares congênitas: avanços, eficiência e desafios clínicos

##plugins.themes.bootstrap3.article.main##

Victoria Ferrari Machado
Clara Rocha Dantas
Melina Soares Grangeiro
Carla Fabiana Castelo Hinojosa
Felipe Freitas de Paula
Eldevan Santos de Santana
Giulia Oliveira Ramalho
Greyce Kelly Ferreira da Silva
Isabela Camila Alves
Neidejany de Assunção do Sacramento

Resumo

Objetivo: Analisar a eficácia e a precisão da Tomografia Computadorizada Cardiovascular na detecção e diagnóstico de doenças cardiovasculares congênitas em diferentes faixas etárias e contextos clínicos, comparando essa tecnologia com outros métodos de imagem, como a ressonância magnética e o ecocardiograma. Métodos: Estudo de revisão integrativa que utilizou 10 artigos da base de dados PubMed Central (PMC), publicados entre 2019 e 2024, que abordam o uso da Tomografia Computadorizada Cardiovascular (TCC) no diagnóstico de doenças cardiovasculares congênitas. Resultados: A TCC mostrou-se uma ferramenta essencial para o diagnóstico precoce de malformações cardíacas, oferecendo precisão elevada em relação a outros métodos de imagem. Os estudos selecionados evidenciaram que a TCC proporciona diagnósticos rápidos e detalhados, auxiliando no planejamento cirúrgico e melhorando os desfechos clínicos, especialmente em crianças. No entanto, a exposição à radiação e a limitação de acesso a essa tecnologia em alguns contextos de saúde são apontados como desafios. Conclusão: A TCC é uma tecnologia eficaz no diagnóstico de doenças cardiovasculares congênitas, mas a exposição à radiação e o custo são fatores limitantes. Estudos futuros devem focar em estratégias para minimizar esses desafios e expandir o acesso à TCC.

##plugins.themes.bootstrap3.article.details##

Como Citar
MachadoV. F., DantasC. R., GrangeiroM. S., HinojosaC. F. C., PaulaF. F. de, SantanaE. S. de, RamalhoG. O., SilvaG. K. F. da, AlvesI. C., & SacramentoN. de A. do. (2025). Tomografia Computadorizada na detecção de doenças cardiovasculares congênitas: avanços, eficiência e desafios clínicos. Revista Eletrônica Acervo Saúde, 25, e18984. https://doi.org/10.25248/reas.e18984.2025
Seção
Revisão Bibliográfica

Referências

1. BATOUTY NM, et al. Computed tomography and magnetic resonance imaging of congenital thoracic systemic venous anomalies. Pediatric Radiology, 2023; 53(5): 1005-1018.

2. BEDAYAT A, et al. CT evaluation of unrepaired/incidental congenital cardiovascular diseases in adults. Diagnostic and Interventional Imaging, 2021; 102(4): 213-224.

3. EPSTEIN R, et al. Trends in cardiac CT utilization for patients with pediatric and congenital heart disease: A multicenter survey study. Journal of Cardiovascular Computed Tomography, 2024; 18(3): 267-273.

4. FRESSE KW, et al. Cardiac computed tomography angiography in the paediatric population: expert consensus from the Filiale de cardiologie pédiatrique et congénitale (FCPC) and the Société française d’imagerie cardiaque et vasculaire diagnostique et interventionnelle (SFICV). Archives of cardiovascular diseases, 2020; 113(8-9): 579-586.

5. GAROT P, et al. Value of FEops HEARTguide patient-specific computational simulations in the planning of left atrial appendage closure with the Amplatzer Amulet closure device: rationale and design of the PREDICT-LAA study. Open heart, 2020; 7: 1326.

6. GOO HW, et al. Pattern Analysis of Left Ventricular Remodeling Using Cardiac Computed Tomography in Children with Congenital Heart Disease: Preliminary Results. Korean Journal or Radiology, 2020; 21(6): 717-725.

7. GOO HW, et al. Pediatric Cardiothoracic CT Guideline Provided by the Asian Society of Cardiovascular Imaging Congenital Heart Disease Study Group: Part 2. Contemporary Clinical Applications. Korean Journal of Radiology, 2021; 22(8): 1397-1415.

8. GUO C, et al. Diagnostic accuracy of multi-slice computed tomography in children with Abernethy malformation. BMC Medical Imaging, 2019; 19: 1-8.

9. HADEED K, et al. Feasibility and accuracy of printed models of complex cardiac defects in small infants from cardiac computed tomography. Pediatric Radiology, 2021; 51(11): 1983-1990.

10. HAN BK, et al. Cardiovascular imaging trends in congenital heart disease: a single center experience. J Cardiovasc Comput Tomogr. 2013; 7(6): 361-6.

11. KHAYATA M, et al. Case series, contemporary review and imaging guided diagnostic and management approach of congenital pericardial defects. Open Heart 2020; 7: 1103.

12. KRAVCHENKO D, et al. Image quality and radiation dose of dual source high pitch computed tomography in pediatric congenital heart disease. Scientific Reports, 2022; 12(1): 9934.

13. MAEDA E, et al. Comparison of image quality between synthetic and patients' electrocardiogram-gated 320-row pediatric cardiac computed tomography. Pediatric Radiology, 2020; 50: 180-187.

14. PAPAZOGLOU AS, et al. Current clinical applications and potential perspective of micro-computed tomography in cardiovascular imaging: A systematic scoping review. Hellenic Journal of Cardiology, 2021; 62(6): 399-407.

15. RAMIREZ-SUAREZ KI, et al. Optimizing neonatal cardiac imaging (magnetic resonance/computed tomography). Pediatr Radiol, 2022; 52(4): 661-675.

16. SACHDEVA S e GUPTA SK. Imaging modalities in congenital heart disease. The Indian Journal of Pediatrics, 2020; 87(5): 385-397.

17. SAMYN MM. A review of the complementary information available with cardiac magnetic resonance imaging and multi-slice computed tomography (CT) during the study of congenital heart disease. Int J Cardiovasc Imaging, 2004; 20(6): 569-78.

18. SCHINDLER P, et al. Cardiac CT in the preoperative diagnostics of neonates with congenital heart disease: radiation dose optimization by omitting test bolus or bolus tracking. Academic Radiology,2020; 27(5): 102-108.

19. STALHAMMAR F, et al. Photon‐counting computed tomography for pediatric congenital heart defects yields images of high diagnostic quality with low radiation doses at both 70 kV and 90 kV. Pediatric Radiology, 2024; 54: 1187–1196.

20. ZIELIŃSKI P, et al. Is there any role for computed tomography imaging in anticipating the functional status in adults late after total cavopulmonary connection? A retrospective evaluation. Kardiologia Polska, 2019; 77(11): 1062-1069.