Aplicação da inteligência artificial no diagnóstico e prevenção da retinopatia diabética: desafios e perspectivas futuras

##plugins.themes.bootstrap3.article.main##

Jhenyfer Coutinho da Silva
Andressa Karkow Crivellaro
Paulo Cesar Ribeiro Junior
Letícia Amorim Borges
Mariana Arruda da Silva
Anna Palméria Santilhana de Souza Morais França
Karoline Aguiar Martins
Luiza Pelissari
Ana Clara Poubel Moser
Elisa Marques Franco

Resumo

Objetivo: Revisar a literatura sobre o uso de tecnologias inteligentes, especialmente a inteligência artificial (IA), no diagnóstico da retinopatia diabética. Métodos: O estudo foi conduzido conforme a estratégia PVO, abordando pacientes com retinopatia diabética e avaliando a IA como ferramenta diagnóstica. As buscas foram realizadas na base de dados PubMed Central (PMC) com os termos "Artificial Intelligence" e "diabetic retinopathy". Foram incluídos artigos em inglês e português, publicados entre 2020 e 2024. Após aplicação dos critérios de seleção, 14 artigos compuseram a análise final. Resultados: A IA mostrou desempenho comparável a especialistas humanos na detecção da retinopatia diabética, utilizando técnicas como aprendizado profundo e redes neurais convolucionais. As principais vantagens incluem alta precisão, eficiência diagnóstica e potencial para expandir o acesso aos cuidados oftalmológicos. Contudo, limitações como custo, necessidade de treinamento e variabilidade na qualidade das imagens ainda representam desafios. Considerações finais: A IA tem potencial significativo para aprimorar a triagem da retinopatia diabética, mas sua implementação requer superar obstáculos relacionados à infraestrutura e treinamento. Estudos futuros são necessários para adaptar essa tecnologia a diferentes contextos clínicos.

##plugins.themes.bootstrap3.article.details##

Como Citar
SilvaJ. C. da, CrivellaroA. K., Ribeiro JuniorP. C., BorgesL. A., SilvaM. A. da, FrançaA. P. S. de S. M., MartinsK. A., PelissariL., MoserA. C. P., & FrancoE. M. (2025). Aplicação da inteligência artificial no diagnóstico e prevenção da retinopatia diabética: desafios e perspectivas futuras. Revista Eletrônica Acervo Saúde, 25, e18995. https://doi.org/10.25248/reas.e18995.2025
Seção
Revisão Bibliográfica

Referências

1. BLAIR JPM, et al. Development of LuxIA, a Cloud-Based AI Diabetic Retinopathy Screening Tool Using a Single Color Fundus Image. Translational Vision Science & Technology, 2023; 12(11): 38-38.

2. CHUN J, KIM H. The present and future of artificial intelligence-based medical image in diabetes mellitus: focus on analytical methods and limitations of clinical use. Journal of Korean Medical Science, 2023; 38(31): e253.

3. CLELAN CR, et al. Artificial intelligence for diabetic retinopathy in low-income and middle-income countries: a scoping review. BMJ Open Diabetes Research and Care, 2023; 11(4): e003424.

4. DOĞAN ME, et al. Head to head comparison of diagnostic performance of three non-mydriatic cameras for diabetic retinopathy screening with artificial intelligence. Eye, 2024; 38: 1694-1701.

5. GRZYBOWSKI A, et al. Artificial intelligence for diabetic retinopathy screening: a review. Eye, 2020; 34(3): 451-460.

6. GRZYBOWSKI A, et al. Diagnostic accuracy of automated diabetic retinopathy image assessment softwares: IDx-DR and Medios Artificial Intelligence. Ophthalmic Research, 2023; 66(1): 1286-1292.

7. HELD LA, et al. Determinants of the implementation of an artificial intelligence-supported device for the screening of diabetic retinopathy in primary care–a qualitative study. Health Informatics Journal, 2022; 28(3): 14604582221112816.

8. HUANG X, et al. Artificial intelligence promotes the diagnosis and screening of diabetic retinopathy. Frontiers in Endocrinology, 2022; 13: 946915.

9. KONG M, SONG SJ. Artificial Intelligence Applications in Diabetic Retinopathy: What We Have Now and What to Expect in the Future. Endocrinology and Metabolism, 2024; 39(3): 416-424.

10. LARSEN TJ, et al. The use of artificial intelligence to assess diabetic eye disease among the Greenlandic population. International Journal of Circumpolar Health, 2024; 83(1): 2314802.

11. MALERBI FK, et al. Diabetic retinopathy screening using artificial intelligence and handheld smartphone-based retinal camera. Journal of diabetes science and technology, 2022; 16(3): 716-723.

12. PAWAR B, et al. Validation of artificial intelligence algorithm in the detection and staging of diabetic retinopathy through fundus photography: an automated tool for detection and grading of diabetic retinopathy. Middle East African journal of ophthalmology, 2021; 28(2): 81-86.

13. QUELLEC G, et al. ExplAIn: Explanatory artificial intelligence for diabetic retinopathy diagnosis. Medical Image Analysis, 2021; 72: 102118.

14. RAMAN R, et al. Using artificial intelligence for diabetic retinopathy screening: Policy implications. Indian Journal of Ophthalmology, 2021; 69(11): 2993-2998.

15. RÊGO S, et al. Screening for Diabetic Retinopathy Using an Automated Diagnostic System Based on Deep Learning: Diagnostic Accuracy Assessment. Ophthalmologica, 2021; 244: 250-257.

16. SHAH P, et al. Validation of deep convolutional neural network-based algorithm for detection of diabetic retinopathy–artificial intelligence versus clinician for screening. Indian journal of ophthalmology, 2020; 68(2): 398-405.

17. SHENG B, et al. An overview of artificial intelligence in diabetic retinopathy and other ocular diseases. Frontiers in Public Health, 2022; 10: 971943.

18. WANG X, et al. Automatic grading system for diabetic retinopathy diagnosis using deep learning artificial intelligence software. Current Eye Research, 2020; 45(12): 1550-1555.

19. WANG Z, et al. Performance of artificial intelligence in diabetic retinopathy screening: a systematic review and meta-analysis of prospective studies. Frontiers in endocrinology, 2023; 14: 1197783.

20. XIE Q, et al. An innovative method for screening and evaluating the degree of diabetic retinopathy and drug treatment based on artificial intelligence algorithms. Pharmacological Research, 2020; 159: 104986.