Aplicação da inteligência artificial no diagnóstico e prevenção da retinopatia diabética: desafios e perspectivas futuras
##plugins.themes.bootstrap3.article.main##
Resumo
Objetivo: Revisar a literatura sobre o uso de tecnologias inteligentes, especialmente a inteligência artificial (IA), no diagnóstico da retinopatia diabética. Métodos: O estudo foi conduzido conforme a estratégia PVO, abordando pacientes com retinopatia diabética e avaliando a IA como ferramenta diagnóstica. As buscas foram realizadas na base de dados PubMed Central (PMC) com os termos "Artificial Intelligence" e "diabetic retinopathy". Foram incluídos artigos em inglês e português, publicados entre 2020 e 2024. Após aplicação dos critérios de seleção, 14 artigos compuseram a análise final. Resultados: A IA mostrou desempenho comparável a especialistas humanos na detecção da retinopatia diabética, utilizando técnicas como aprendizado profundo e redes neurais convolucionais. As principais vantagens incluem alta precisão, eficiência diagnóstica e potencial para expandir o acesso aos cuidados oftalmológicos. Contudo, limitações como custo, necessidade de treinamento e variabilidade na qualidade das imagens ainda representam desafios. Considerações finais: A IA tem potencial significativo para aprimorar a triagem da retinopatia diabética, mas sua implementação requer superar obstáculos relacionados à infraestrutura e treinamento. Estudos futuros são necessários para adaptar essa tecnologia a diferentes contextos clínicos.
##plugins.themes.bootstrap3.article.details##
Copyright © | Todos os direitos reservados.
A revista detém os direitos autorais exclusivos de publicação deste artigo nos termos da lei 9610/98.
Reprodução parcial
É livre o uso de partes do texto, figuras e questionário do artigo, sendo obrigatória a citação dos autores e revista.
Reprodução total
É expressamente proibida, devendo ser autorizada pela revista.
Referências
2. CHUN J, KIM H. The present and future of artificial intelligence-based medical image in diabetes mellitus: focus on analytical methods and limitations of clinical use. Journal of Korean Medical Science, 2023; 38(31): e253.
3. CLELAN CR, et al. Artificial intelligence for diabetic retinopathy in low-income and middle-income countries: a scoping review. BMJ Open Diabetes Research and Care, 2023; 11(4): e003424.
4. DOĞAN ME, et al. Head to head comparison of diagnostic performance of three non-mydriatic cameras for diabetic retinopathy screening with artificial intelligence. Eye, 2024; 38: 1694-1701.
5. GRZYBOWSKI A, et al. Artificial intelligence for diabetic retinopathy screening: a review. Eye, 2020; 34(3): 451-460.
6. GRZYBOWSKI A, et al. Diagnostic accuracy of automated diabetic retinopathy image assessment softwares: IDx-DR and Medios Artificial Intelligence. Ophthalmic Research, 2023; 66(1): 1286-1292.
7. HELD LA, et al. Determinants of the implementation of an artificial intelligence-supported device for the screening of diabetic retinopathy in primary care–a qualitative study. Health Informatics Journal, 2022; 28(3): 14604582221112816.
8. HUANG X, et al. Artificial intelligence promotes the diagnosis and screening of diabetic retinopathy. Frontiers in Endocrinology, 2022; 13: 946915.
9. KONG M, SONG SJ. Artificial Intelligence Applications in Diabetic Retinopathy: What We Have Now and What to Expect in the Future. Endocrinology and Metabolism, 2024; 39(3): 416-424.
10. LARSEN TJ, et al. The use of artificial intelligence to assess diabetic eye disease among the Greenlandic population. International Journal of Circumpolar Health, 2024; 83(1): 2314802.
11. MALERBI FK, et al. Diabetic retinopathy screening using artificial intelligence and handheld smartphone-based retinal camera. Journal of diabetes science and technology, 2022; 16(3): 716-723.
12. PAWAR B, et al. Validation of artificial intelligence algorithm in the detection and staging of diabetic retinopathy through fundus photography: an automated tool for detection and grading of diabetic retinopathy. Middle East African journal of ophthalmology, 2021; 28(2): 81-86.
13. QUELLEC G, et al. ExplAIn: Explanatory artificial intelligence for diabetic retinopathy diagnosis. Medical Image Analysis, 2021; 72: 102118.
14. RAMAN R, et al. Using artificial intelligence for diabetic retinopathy screening: Policy implications. Indian Journal of Ophthalmology, 2021; 69(11): 2993-2998.
15. RÊGO S, et al. Screening for Diabetic Retinopathy Using an Automated Diagnostic System Based on Deep Learning: Diagnostic Accuracy Assessment. Ophthalmologica, 2021; 244: 250-257.
16. SHAH P, et al. Validation of deep convolutional neural network-based algorithm for detection of diabetic retinopathy–artificial intelligence versus clinician for screening. Indian journal of ophthalmology, 2020; 68(2): 398-405.
17. SHENG B, et al. An overview of artificial intelligence in diabetic retinopathy and other ocular diseases. Frontiers in Public Health, 2022; 10: 971943.
18. WANG X, et al. Automatic grading system for diabetic retinopathy diagnosis using deep learning artificial intelligence software. Current Eye Research, 2020; 45(12): 1550-1555.
19. WANG Z, et al. Performance of artificial intelligence in diabetic retinopathy screening: a systematic review and meta-analysis of prospective studies. Frontiers in endocrinology, 2023; 14: 1197783.
20. XIE Q, et al. An innovative method for screening and evaluating the degree of diabetic retinopathy and drug treatment based on artificial intelligence algorithms. Pharmacological Research, 2020; 159: 104986.