Utilização da estimulação cerebral profunda na intervenção neurocirúrgica sobre a região límbica
##plugins.themes.bootstrap3.article.main##
Resumo
Objetivo: Detalhar os mecanismos que envolvem a cirurgia estereotáxica, em especial a Estimulação Cerebral Profunda (ECP). Métodos: Realizou-se uma pesquisa do tipo revisão integrativa, buscando-se base literária nas plataformas PubMed, NIH e NCBI através da utilização dos descritores pré-determinados, além de fundamentá-los nos objetivos, excluindo qualquer referência que não colaborasse com os objetivos propostos e que fugisse do tema. Resultados: A ECP, realizada através de cirurgia estereotáxica, mostrou-se uma grande aliada na terapia cirúrgica dos transtornos que envolvem a RL, sendo eficaz contra depressão, TOC e outras patologias relacionadas à região abordada das mais diversas formas, evoluindo o tratamento perante as moléstias apresentadas. A ECP se mostrou a neuromodulação por estimulação estereotáxica de maior diligência, principalmente em pacientes que tiveram refratariedade tanto medicamentosa, quanto cognitivo-comportamental. Considerações finais: O mecanismo estereotáxico da ECP se aprimora a cada ano, sendo cada vez mais introduzida na terapêutica das mais diversas disfunções relacionadas ao córtex cerebral, principalmente no que se refere ao córtex límbico.
##plugins.themes.bootstrap3.article.details##
Copyright © | Todos os direitos reservados.
A revista detém os direitos autorais exclusivos de publicação deste artigo nos termos da lei 9610/98.
Reprodução parcial
É livre o uso de partes do texto, figuras e questionário do artigo, sendo obrigatória a citação dos autores e revista.
Reprodução total
É expressamente proibida, devendo ser autorizada pela revista.
Referências
2. HARIZ M e BLOMSTEDT P. Deep brain stimulation for Parkinson's disease. J Intern Med., 2022; 292(5): 764-778.
3. MAHONEY JJ 3rd, et al. Transcranial magnetic stimulation, deep brain stimulation, and other forms of neuromodulation for substance use disorders: Review of modalities and implications for treatment. J Neurol Sci., 2020; 418: 117149.
4. CAREY G, et al. Neuroimaging of Anxiety in Parkinson's Disease: A Systematic Review. Mov Disord., 2021; 36(2): 327-339.
5. ANAND A, et al. Elimination of anxiety after laser interstitial thermal ablation of the dominant cingulate gyrus for epilepsy. Surg Neurol Int., 2022; 13: 178.
6. KENWOOD MM, et al. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology. 2022; 47(5): 1141.
7. WHEELER L, et al. Case report: Bridging limbic network epilepsy with psychiatric, memory, and sleep comorbidities: case illustrations of reversible psychosis symptoms during continuous, high-frequency ANT-DBS. Front Netw Physiol., 2024; 4: 1426743.
8. FIGEE M, et al. Deep Brain Stimulation for Depression. Neurotherapeutics, 2022; 19(4): 1229-1245.
9. JUMAH FR e DOSSANI RH. Neuroanatomy, Cingulate Cortex. StatPearls, 2022.
10. COHEN SP, et al. Chronic pain: an update on burden, best practices, and new advances. Lancet, 2021; 397(10289): 2082-2097.
11. SIEBNER HR, et al. Transcranial magnetic stimulation of the brain: What is stimulated? - A consensus and critical position paper. Clin Neurophysiol., 2022; 140: 59-97.
12. JOURNÉE HL e JOURNÉE SL. Transcranial Magnetic Stimulation and Transcranial Electrical Stimulation in Horses. Vet Clin North Am Equine Pract., 2022; 38(2): 189-211.
13. DANDEKAR MP, et al. Deep brain stimulation for treatment-resistant depression: an integrative review of preclinical and clinical findings and translational implications. Mol Psychiatry, 2018; 23(5): 1094-1112.
14. ABUHASAN Q, et al. Neuroanatomy, Amygdala. StatPearls, 2023.
15. BEAR MH, et al. Neuroanatomy, Hypothalamus. StatPearls, 2022.
16. FOGWE LA, et al. Neuroanatomy, Hippocampus. StatPearls, 2023.
17. DSM-5-TR. Manual Diagnóstico e Estatístico de Transtornos Mentais. Texto Revisado. 5ª ed. Washington: American Psychiatric Association, 2023; 1331.
18. ZHOU X, et al. Comparative efficacy and acceptability of antidepressants, psychotherapies, and their combination for acute treatment of children and adolescents with depressive disorder: a systematic review and network meta-analysis. Lancet Psychiatry, 2020; 7(7): 581-601.
19. FRIDGEIRSSON EA, et al. Deep brain stimulation modulates directional limbic connectivity in obsessive-compulsive disorder. Brain, 2020; 143(5): 1603-1612.
20. GARCÍA-MARÍN LM, et al. The pharmacogenomics of selective serotonin reuptake inhibitors. Pharmacogenomics, 2022; 23(10): 597-607.
21. SU W, et al. A 28-Year-Old Man with Obsessive-Compulsive Disorder, Post-Traumatic Stress Disorder, and Dissociative Identity Disorder Responding to Aripiprazole Augmentation of Clomipramine Combined with Psychoeducation and Exposure and Response Prevention. Am J Case Rep., 2023; 24: e941534.
22. POZZI NG e ISAIAS IU. Adaptive deep brain stimulation: Retuning Parkinson's disease. Handb Clin Neurol., 2022; 184: 273-284.
23. SANDOVAL-PISTORIUS SS, et al. Advances in Deep Brain Stimulation: From Mechanisms to Applications. J Neurosci., 2023; 43(45): 7575-7586.
24. JAKOBS M, et al. A multicenter, open-label, controlled trial on acceptance, convenience, and complications of rechargeable internal pulse generators for deep brain stimulation: the Multi Recharge Trial. J Neurosurg., 2019; 133(3): 821-829.
25. LIU H, et al. The effect of fornix deep brain stimulation in brain diseases. Cell Mol Life Sci., 2020; 77(17): 3279-3291.
26. TOMIYAMA H, et al. Increased functional connectivity between presupplementary motor area and inferior frontal gyrus associated with the ability of motor response inhibition in obsessive-compulsive disorder. Hum Brain Mapp., 2022; 43(3): 974-984.
27. ZHAO Q, et al. Limbic cortico-striato-thalamo-cortical functional connectivity in drug-naïve patients of obsessive-compulsive disorder. Psychol Med., 2021; 51(1): 70-82.
28. JASPERS-FAYER F, et al. An fMRI study of cognitive planning before and after symptom provocation in pediatric obsessive-compulsive disorder. J Psychiatry Neurosci., 2022; 47(6): E409-E420.
29. SHA Z, et al. Functional disruption in prefrontal-striatal network in obsessive-compulsive disorder. Psychiatry Res Neuroimaging, 2020; 300: 111081.
30. WESTFALL S, et al. Chronic Stress-Induced Depression and Anxiety Priming Modulated by Gut-Brain-Axis Immunity. Front Immunol., 2021; 12: 670500.
31. OSIMO EF, et al. Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav Immun., 2020; 87: 901-909.
32. MESBAH R, et al. Association Between the Fronto-Limbic Network and Cognitive and Emotional Functioning in Individuals With Bipolar Disorder: A Systematic Review and Meta-analysis. JAMA Psychiatry, 2023; 80(5): 432-440.
33. YOUNG CB, et al. Neuroanatomy, Basal Ganglia. StatPearls, 2024.
34. ELLIOTT BL, et al. Limbic and Executive Meso- and Nigrostriatal Tracts Predict Impulsivity Differences in Attention-Deficit/Hyperactivity Disorder. Biol Psychiatry Cogn Neurosci Neuroimag, 2022; 7(4): 415-423.
35. SALVI V, et al. ADHD and Bipolar Disorder in Adulthood: Clinical and Treatment Implications. Medicina, 2021; 57(5): 466.
36. SHETH SA e MAYBERG HS. Deep Brain Stimulation for Obsessive-Compulsive Disorder and Depression. Annu Rev Neurosci., 2023; 46: 341-358.
37. TEIXEIRA SA, et al. Molecular basis and clinical perspectives of deep brain stimulation for major depressive disorder. J Cereb Blood Flow Metab., 2022; 42(4): 683-685.
38. LI G, et al. Instantaneous antidepressant effect of lateral habenula deep brain stimulation in rats studied with functional MRI. Elife, 2023; 12: e84693.
39. MUTZ J. Brain stimulation treatment for bipolar disorder. Bipolar Disord., 2023; 25(1): 9-24.
40. WONG SM, et al. Phase Resetting in the Anterior Cingulate Cortex Subserves Childhood Attention and Is Impaired by Epilepsy. CerebCortex, 2021; 32(1): 29-40.