Utilização da estimulação cerebral profunda na intervenção neurocirúrgica sobre a região límbica

##plugins.themes.bootstrap3.article.main##

Thiago Mendonça Nonato Oliveira
Paulo Luy Alencar Vieira Mariano
Juliany Almeida Ramos
Maria Paula Moreira Santos
Jonathan Caetano dos Santos
Adrhyan Araújo da Silva Oliveira
Deusilene Souza Vieira
Ana Maísa Passos-Silva

Resumo

Objetivo: Detalhar os mecanismos que envolvem a cirurgia estereotáxica, em especial a Estimulação Cerebral Profunda (ECP). Métodos: Realizou-se uma pesquisa do tipo revisão integrativa, buscando-se base literária nas plataformas PubMed, NIH e NCBI através da utilização dos descritores pré-determinados, além de fundamentá-los nos objetivos, excluindo qualquer referência que não colaborasse com os objetivos propostos e que fugisse do tema. Resultados: A ECP, realizada através de cirurgia estereotáxica, mostrou-se uma grande aliada na terapia cirúrgica dos transtornos que envolvem a RL, sendo eficaz contra depressão, TOC e outras patologias relacionadas à região abordada das mais diversas formas, evoluindo o tratamento perante as moléstias apresentadas. A ECP se mostrou a neuromodulação por estimulação estereotáxica de maior diligência, principalmente em pacientes que tiveram refratariedade tanto medicamentosa, quanto cognitivo-comportamental. Considerações finais: O mecanismo estereotáxico da ECP se aprimora a cada ano, sendo cada vez mais introduzida na terapêutica das mais diversas disfunções relacionadas ao córtex cerebral, principalmente no que se refere ao córtex límbico.

##plugins.themes.bootstrap3.article.details##

Como Citar
OliveiraT. M. N., MarianoP. L. A. V., RamosJ. A., SantosM. P. M., SantosJ. C. dos, OliveiraA. A. da S., VieiraD. S., & Passos-SilvaA. M. (2025). Utilização da estimulação cerebral profunda na intervenção neurocirúrgica sobre a região límbica. Revista Eletrônica Acervo Saúde, 25, e19161. https://doi.org/10.25248/reas.e19161.2025
Seção
Revisão Bibliográfica

Referências

1. POLYAKOV YI e KHOLYAVIN AI. Stereotactic surgeries for abuse syndromes: Patient selection and results. ProgBrain Res., 2022; 272(1): 85-103.
2. HARIZ M e BLOMSTEDT P. Deep brain stimulation for Parkinson's disease. J Intern Med., 2022; 292(5): 764-778.
3. MAHONEY JJ 3rd, et al. Transcranial magnetic stimulation, deep brain stimulation, and other forms of neuromodulation for substance use disorders: Review of modalities and implications for treatment. J Neurol Sci., 2020; 418: 117149.
4. CAREY G, et al. Neuroimaging of Anxiety in Parkinson's Disease: A Systematic Review. Mov Disord., 2021; 36(2): 327-339.
5. ANAND A, et al. Elimination of anxiety after laser interstitial thermal ablation of the dominant cingulate gyrus for epilepsy. Surg Neurol Int., 2022; 13: 178.
6. KENWOOD MM, et al. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology. 2022; 47(5): 1141.
7. WHEELER L, et al. Case report: Bridging limbic network epilepsy with psychiatric, memory, and sleep comorbidities: case illustrations of reversible psychosis symptoms during continuous, high-frequency ANT-DBS. Front Netw Physiol., 2024; 4: 1426743.
8. FIGEE M, et al. Deep Brain Stimulation for Depression. Neurotherapeutics, 2022; 19(4): 1229-1245.
9. JUMAH FR e DOSSANI RH. Neuroanatomy, Cingulate Cortex. StatPearls, 2022.
10. COHEN SP, et al. Chronic pain: an update on burden, best practices, and new advances. Lancet, 2021; 397(10289): 2082-2097.
11. SIEBNER HR, et al. Transcranial magnetic stimulation of the brain: What is stimulated? - A consensus and critical position paper. Clin Neurophysiol., 2022; 140: 59-97.
12. JOURNÉE HL e JOURNÉE SL. Transcranial Magnetic Stimulation and Transcranial Electrical Stimulation in Horses. Vet Clin North Am Equine Pract., 2022; 38(2): 189-211.
13. DANDEKAR MP, et al. Deep brain stimulation for treatment-resistant depression: an integrative review of preclinical and clinical findings and translational implications. Mol Psychiatry, 2018; 23(5): 1094-1112.
14. ABUHASAN Q, et al. Neuroanatomy, Amygdala. StatPearls, 2023.
15. BEAR MH, et al. Neuroanatomy, Hypothalamus. StatPearls, 2022.
16. FOGWE LA, et al. Neuroanatomy, Hippocampus. StatPearls, 2023.
17. DSM-5-TR. Manual Diagnóstico e Estatístico de Transtornos Mentais. Texto Revisado. 5ª ed. Washington: American Psychiatric Association, 2023; 1331.
18. ZHOU X, et al. Comparative efficacy and acceptability of antidepressants, psychotherapies, and their combination for acute treatment of children and adolescents with depressive disorder: a systematic review and network meta-analysis. Lancet Psychiatry, 2020; 7(7): 581-601.
19. FRIDGEIRSSON EA, et al. Deep brain stimulation modulates directional limbic connectivity in obsessive-compulsive disorder. Brain, 2020; 143(5): 1603-1612.
20. GARCÍA-MARÍN LM, et al. The pharmacogenomics of selective serotonin reuptake inhibitors. Pharmacogenomics, 2022; 23(10): 597-607.
21. SU W, et al. A 28-Year-Old Man with Obsessive-Compulsive Disorder, Post-Traumatic Stress Disorder, and Dissociative Identity Disorder Responding to Aripiprazole Augmentation of Clomipramine Combined with Psychoeducation and Exposure and Response Prevention. Am J Case Rep., 2023; 24: e941534.
22. POZZI NG e ISAIAS IU. Adaptive deep brain stimulation: Retuning Parkinson's disease. Handb Clin Neurol., 2022; 184: 273-284.
23. SANDOVAL-PISTORIUS SS, et al. Advances in Deep Brain Stimulation: From Mechanisms to Applications. J Neurosci., 2023; 43(45): 7575-7586.
24. JAKOBS M, et al. A multicenter, open-label, controlled trial on acceptance, convenience, and complications of rechargeable internal pulse generators for deep brain stimulation: the Multi Recharge Trial. J Neurosurg., 2019; 133(3): 821-829.
25. LIU H, et al. The effect of fornix deep brain stimulation in brain diseases. Cell Mol Life Sci., 2020; 77(17): 3279-3291.
26. TOMIYAMA H, et al. Increased functional connectivity between presupplementary motor area and inferior frontal gyrus associated with the ability of motor response inhibition in obsessive-compulsive disorder. Hum Brain Mapp., 2022; 43(3): 974-984.
27. ZHAO Q, et al. Limbic cortico-striato-thalamo-cortical functional connectivity in drug-naïve patients of obsessive-compulsive disorder. Psychol Med., 2021; 51(1): 70-82.
28. JASPERS-FAYER F, et al. An fMRI study of cognitive planning before and after symptom provocation in pediatric obsessive-compulsive disorder. J Psychiatry Neurosci., 2022; 47(6): E409-E420.
29. SHA Z, et al. Functional disruption in prefrontal-striatal network in obsessive-compulsive disorder. Psychiatry Res Neuroimaging, 2020; 300: 111081.
30. WESTFALL S, et al. Chronic Stress-Induced Depression and Anxiety Priming Modulated by Gut-Brain-Axis Immunity. Front Immunol., 2021; 12: 670500.
31. OSIMO EF, et al. Inflammatory markers in depression: A meta-analysis of mean differences and variability in 5,166 patients and 5,083 controls. Brain Behav Immun., 2020; 87: 901-909.
32. MESBAH R, et al. Association Between the Fronto-Limbic Network and Cognitive and Emotional Functioning in Individuals With Bipolar Disorder: A Systematic Review and Meta-analysis. JAMA Psychiatry, 2023; 80(5): 432-440.
33. YOUNG CB, et al. Neuroanatomy, Basal Ganglia. StatPearls, 2024.
34. ELLIOTT BL, et al. Limbic and Executive Meso- and Nigrostriatal Tracts Predict Impulsivity Differences in Attention-Deficit/Hyperactivity Disorder. Biol Psychiatry Cogn Neurosci Neuroimag, 2022; 7(4): 415-423.
35. SALVI V, et al. ADHD and Bipolar Disorder in Adulthood: Clinical and Treatment Implications. Medicina, 2021; 57(5): 466.
36. SHETH SA e MAYBERG HS. Deep Brain Stimulation for Obsessive-Compulsive Disorder and Depression. Annu Rev Neurosci., 2023; 46: 341-358.
37. TEIXEIRA SA, et al. Molecular basis and clinical perspectives of deep brain stimulation for major depressive disorder. J Cereb Blood Flow Metab., 2022; 42(4): 683-685.
38. LI G, et al. Instantaneous antidepressant effect of lateral habenula deep brain stimulation in rats studied with functional MRI. Elife, 2023; 12: e84693.
39. MUTZ J. Brain stimulation treatment for bipolar disorder. Bipolar Disord., 2023; 25(1): 9-24.
40. WONG SM, et al. Phase Resetting in the Anterior Cingulate Cortex Subserves Childhood Attention and Is Impaired by Epilepsy. CerebCortex, 2021; 32(1): 29-40.