O impacto da Inteligência Artificial no diagnóstico e prognóstico da Insuficiência Cardíaca

##plugins.themes.bootstrap3.article.main##

Maria Fernanda Garcia de Almeida
Daniele Regina Gianini
Maria Julia Santana Santos Cotta
Rayanne Lopes de Medeiros
Mariana Lima Ayres Angola
Eduarda Caroline Reche
Pedro Vinicius Araújo Viana
Aderaldo Salustriano Santiago Neto
Adriel Machado Toledo
Tarkio Braz Miranda Pereira

Resumo

Objetivo: Compreender o papel da inteligência artificial (IA) na detecção, diagnóstico, monitoramento e prognóstico da insuficiência cardíaca (IC). Métodos: Trata-se de uma revisão bibliográfica integrativa, na qual foi utilizada a base de dados PubMed Central (PMC). Inicialmente, foram identificados 945 artigos, que foram submetidos a critérios de elegibilidade. Dentre esses, 15 artigos foram selecionados para a elaboração deste estudo. Resultados: A IC é uma das principais condições crônicas de caráter cardiovascular, cuja gestão clínica atual requer cada vez mais a adoção de novas tecnologias. Nesse contexto, a inteligência artificial, com a aplicação de algoritmos como machine learning (ML), redes neurais convolucionais (CNN), Support Vector Machine (SVM) e K-Nearest Neighbors (KNN), desempenha um papel de extrema relevância para a otimização e detecção precoce dessa patologia cardíaca. Além de agilidade, esses algoritmos permitem identificar padrões que podem não ser evidentes em análises tradicionais, influenciando na melhoria dos fatores diagnósticos e prognósticos com o objetivo de aprimorar os desfechos clínicos. Considerações finais: Portanto, destaca-se que, apesar do enorme potencial da IA como ferramenta para auxiliar no manejo clínico da IC, ainda são necessárias mais pesquisas para garantir a padronização dos modelos, a fim de assegurar sua implementação eficaz na prática clínica.

##plugins.themes.bootstrap3.article.details##

Como Citar
AlmeidaM. F. G. de, GianiniD. R., CottaM. J. S. S., MedeirosR. L. de, AngolaM. L. A., RecheE. C., VianaP. V. A., NetoA. S. S., ToledoA. M., & PereiraT. B. M. (2025). O impacto da Inteligência Artificial no diagnóstico e prognóstico da Insuficiência Cardíaca. Revista Eletrônica Acervo Saúde, 25, e19246. https://doi.org/10.25248/reas.e19246.2025
Seção
Revisão Bibliográfica

Referências

1. AMATIVA B, et al. Machine learning for subtype definition and risk prediction in heart failure, acute coronary syndromes and atrial fibrillation: systematic review of validity and clinical utility. BMC Medicine, 2021;19: 85.

2. AMIN H, et al. Future perspective of heart failure care: benefits and bottlenecks of artificial intelligence and eHealth. Future Cardiology, 2021; 17(6): 917-921.

3. BANERJEE A, et al. Identifying subtypes of heart failure from three electronic health record sources with machine learning: an external, prognostic, and genetic validation study. Lancet Digit Health 2023; 5: 370-79.

4. BOTROS J, et al. CNN and SVM-Based Models for the Detection of Heart Failure Using Electrocardiogram Signals. Sensors, 2022; 22: 22239190.

5. CELIK A, et al. The diagnostic value of chest X‐ray scanning by the help of Artificial Intelligence in Heart Failure (ART‐IN‐HF). Clinical cardiology, 2023; 46: 1562–1568.

6. FARAH Y, et al. Artificial intelligence in the diagnosis and detection of heart failure: the past, present, and future. Reviews in cardiovascular medicine, 2021; 22(4): 1095-1113.

7. FREDERICK ML, et al. Role of Artificial Intelligence and Machine Learning to Create Predictors, Enhance Molecular Understanding, and Implement Purposeful Programs for Myocardial Recovery. Methodist DeBakey Cardiovasc J, 2024; 20(4): 76-87.

8. GANESAN R, et al. Explainable Machine Learning Based Prediction of Severity of Heart Failure Using Primary Electronic Health Records. Studies in health technology and informatics, 2024; 316: 542-546.

9. GLADDING PA, et al. Multiomics, virtual reality and artificial intelligence in heart failure. Future cardiology, 2021; 17(8): 1335-1347.

10. JING L, et al. A Machine Learning Approach to Management of Heart Failure Populations. 2020 By the American College of Cardiology foundation. Published by Elsevier, 2020; 8(7): 578-587.

11. KWON J, et al. Artificial intelligence algorithm for predicting mortality of patients with acute heart failure. PloS one, 2019; 14(7): 219302.

12. LANG FM, et al. Role of Artificial Intelligence and Machine Learning to Create Predictors, Enhance Molecular Understanding, and Implement Purposeful Programs for Myocardial Recovery. Methodist Debakey Cardiovasc J, 2024; 20(4): 76-87.

13. MUHAMMED U, et al. IoT Based Smart Monitoring of Pacients' with Acute Heart Failure. Sensors, 2022; 22(7): 2431.

14. NAGAVELLI U, et al. Machine Learning Technology-Based Heart Disease Detection Models. Journal of Healthcare Engineering, 2022; 2022(1): 7351061.

15. OO MM, et al. Artificial intelligence-assisted automated heart failure detection and classification from electronic health records. ESC Heart Fail, 2024; 11(5): 2769-2777.

16. SENAN EM, et al. Score and Correlation Coefficient-Based Feature Selection for Predicting Heart Failure Diagnosis by Using Machine Learning Algorithms. Computational and Mathematical Methods in Medicine, 2021; 2021(1): 8500314.

17. TOGO S, et al. Model for classification of heart failure severity in patients with hypertrophic cardiomyopathy using a deep neural network algorithm with a 12-lead electrocardiogram. Open Heart, 2023; 10(2): 2414.

18. TOHYAMA T, et al. Machine learning‐based model for predicting 1 year mortality of hospitalized patients with heart failure. ESC heart failure, 2021; 8(5): 4077-4085.

19. WANG K, et al. Interpretable prediction of 3-year all-cause mortality in patients with heart failure caused by coronary heart disease based on machine learning and SHAP. Computers in biology and medicine, 2021; 137: 104813.

20. WU J, et al. Artificial intelligence methods for improved detection of undiagnosed heart failure with preserved ejection fraction. European Journal of Heart Failure, 2024; 26(2): 302-310.