Circunferência da panturrilha e sobrevida em 6 meses em pacientes idosos com câncer

##plugins.themes.bootstrap3.article.main##

Paloma Arquimedes Alves dos Santos
Fernanda Rafaella de Melo Silva
Gabriel de Moraes Ramos Borba
Ana Carolina Rezende Silveira
Jurema Telles de Oliveira Lima
Maria Júlia Gonçalves de Mello

Resumo

Objetivo: Verificar se o CP baixo (<31 cm) ao diagnóstico é fator de risco independente para óbito em idosos com câncer. Métodos: Este estudo utilizou dados secundários de uma coorte de idosos com câncer internados de 2016 a 2020 no Nordeste do Brasil. Avaliação geriátrica e dados sociodemográficos, antecedentes e clínicos foram coletados na admissão. Os critérios de inclusão foram pacientes submetidos à medição de CP baseada em MAN. O desfecho primário foi morte durante o seguimento de 180 dias. As razões de risco (HR) brutas e ajustadas foram obtidas a partir do modelo de risco proporcional de Cox, e a análise de sobrevivência utilizou o método de Kaplan-Meier de acordo com CP. Resultados: Dos 414 pacientes incluídos, 32,6% apresentaram CP baixa. A taxa de mortalidade geral foi de 21,5% (89 óbitos), 25,9% para o grupo de CP baixo e 19,7% para o grupo de CP adequado. A baixa CP não foi identificada como fator de risco independente para óbito na análise bivariada e multivariada. A probabilidade de sobrevivência não foi diferente entre os pontos de corte do CP. Conclusão: A baixa MM avaliada através do ponto de corte de CP recomendado pela OMS e MAN não apresentou valor preditivo para óbito em idosos com câncer.

##plugins.themes.bootstrap3.article.details##

Como Citar
SantosP. A. A. dos, SilvaF. R. de M., BorbaG. de M. R., SilveiraA. C. R., LimaJ. T. de O., & MelloM. J. G. de. (2025). Circunferência da panturrilha e sobrevida em 6 meses em pacientes idosos com câncer. Revista Eletrônica Acervo Saúde, 25, e19568. https://doi.org/10.25248/reas.e19568.2025
Seção
Artigos Originais

Referências

1. BARAZZONI R, et al. Guidance for assessment of the muscle mass phenotypic criterion for the Global Leadership Initiative on Malnutrition (GLIM) diagnosis of malnutrition. Clin Nutr, 2022; 41(6): 1425–33.

2. BARBALHO ER, et al. Is skeletal muscle radiodensity able to indicate physical function impairment in older adults with gastrointestinal cancer ? Exp Gerontol. Elsevier, 2019; 125: 110688.

3. BARBOSA-SILVA TG, et al. Prevalence of sarcopenia among community-dwelling elderly of a medium-sized South American city: Results of the COMO VAI? Study. J Cachexia Sarcopenia Muscle, 2016; 7(2): 136–43.

4. CANDOW DG, CHILIBECK PD. Differences in Size , Strength , and Power of Upper and Lower Body Muscle Groups in Young and Older Men., 2005; 60(2): 148–56.

5. CASTILLO-MARTÍNEZ L, et al. Nutritional Assessment Tools for the Identification of Malnutrition and Nutritional Risk Associated with Cancer Treatment. Rev Investig Clínica, 2018; 70(3).

6. CHANG AY, et al. Measuring population ageing : an analysis of the Global Burden of Disease Study 2017. Lancet Public Heal., 2017; 4(3): 159–67.

7. CHARLSON ME, et al. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J Chronic Dis., 1987; 40(5): 373–83.

8. CHENG X, et al. Population ageing and mortality during 1990 – 2017 : A global decomposition analysis. Plos Med., 2020; 17(6): 1003138.

9. CHEN LK, et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. Elsevier Inc.; 2020; 21(3): 300–307.

10. CHRISTNER S, et al. Evaluation of the nutritional status of older hospitalised geriatric patients: a comparative analysis of a Mini Nutritional Assessment (MNA) version and the Nutritional Risk Screening (NRS 2002). J Hum Nutr Diet., 2016; 29(6): 704–713.

11. CRAIG CL, et al. International physical activity questionnaire: 12-Country reliability and validity. Med Sci Sports Exerc., 2003; 35(8): 1381–95.

12. CRUZ-JENTOFT AJ, et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019; 48(1): 16–31.

13. D’ALMEIDA CA, et al. Prevalence of Malnutrition in Older Hospitalized Cancer Patients: A Multicenter

14. DA COSTA PEREIRA JP, et al. Frailty but not low muscle quality nor sarcopenia is independently associated with mortality among previously hospitalized older adults: A prospective study. Geriatr Gerontol Int., 2023; 23(10): 736-43.

15. EDWARDS BJ, et al. Overall survival in older patients with cancer. BMJ Support Palliat Care, 2020; 10(1): 25–35.

16. FAYH APT and de SOUSA IMGM. New insights on how and where to measure muscle mass. Curr Opin Support Palliat Care, 2020; 14: 316–23.

17. GNJIDIC D, et al. Polypharmacy cutoff and outcomes : five or more medicines were used to identify community-dwelling older men at risk of different adverse outcomes. J Clin Epidemiol., 2012; 65(9): 989–95.

18. GONZALEZ MC, et al. Calf circumference: Cutoff values from the NHANES 1999-2006. Am J Clin Nutr. Oxford University Press, 2021; 113(6): 1679–87.

19. GUIGOZ Y, et al. Assessing the Nutritional Status of the Elderly: The Mini Nutritional Assessment as Part of the Geriatric Evaluation. Nutr Rev. 2009; 54(1): 59–65.

20. ISLEYEN ZS, et al.The risk of malnutrition and its clinical implications in older patients with cancer. Aging Clin Exp Res., 2023; 35(11): 2675–83.

21. JANSSEN I, et al. Skeletal muscle mass and distribution in 468 men and women aged 18 – 88 yr. Journal of Applied Physiology, 2000; 89: 81–8.

22. JAFARINASABIAN P, et al. Aging human body: Changes in bone, muscle and body fat with consequent changes in nutrient intake. J Endocrinol., 2017; 234(1): 37–51.

23. KAISER MJ, et al. Validation of the Mini Nutritional Assessment short-form (MNA®-SF): A practical tool for identification of nutritional status. J Nutr Heal Aging, 2009; 13(9): 782–8.

24. KARNOFSKY DA, BURCHENAL J. The clinical evaluation of chemotherapeutic agents in cancer. In: MacLeod CM (ed), Evaluation of Chemotherapeutic Agents. New York Columbia Univ Press: Elsevier Masson SAS; 1949: 191–205.

25. KÄSMANN L, et al. Karnofsky performance score, radiation dose and nodal status predict survival of elderly patients irradiated for limited-disease small-cell lung cancer. Anticancer Res., 2016; 36(8): 4177–80.

26. KAZEMI-BAJESTANI SMR, et al. Computed tomography-defined muscle and fat wasting are associated with cancer clinical outcomes. Semin Cell Dev Biol. Elsevier Ltd; 2016; 54: 2–10.

27. LANDI F, et al. Calf circumference , frailty and physical performance among older adults living in the community. Clinical Nutrition, 2014; 33: 539–44.

28. LIMA J, MORAES SILVA F. Comments on the methodology and completeness of a meta-analysis on the association between low calf circumference and mortality. Eur Geriatr Med., 2022; 13(4): 1011–2.

29. LÓPEZ-OTÍN C, et al. The Hallmarks of Aging Longevity. Cell, 2013; 153(6): 1194–217.

30. PALMELA C, et al. Body composition as a prognostic factor of neoadjuvant chemotherapy toxicity and outcome in patients with locally advanced gastric cancer. J Gastric Cancer, 2017; 17(1): 74–87.

31. PODSIADLO D, RICHARDSON S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc., 1991; 39(2): 142–8.

32. ROLLAND Y, et al. Sarcopenia, Calf Circumference, and Physical Function of Elderly Women: A Cross‐Sectional Study. J Am Geriatr Soc., 2003; 51(8): 1120–4.

33. SALES LT, et al. Nutritional risk as a predictor of short-term outcomes in a prospective cohort of elderly patients with cancer. Ann Oncol., 2017; 28: 549.

34. SILVA JR, et al. Different methods for diagnosis of sarcopenia and its association with nutritional status and survival in patients with advanced cancer in palliative care. Nutrition, 2019; 60: 48–52.

35. SODERSTROM L, ROSENBLAD A. Long-term association between malnutrition and all-cause mortality among older adults : A 10-years follow-up study. Clinical Nutrition, 2023; 42: 2554-61.

36. SOUSA IM, et al. Accuracy of isolated nutrition indicators in diagnosing malnutrition and their prognostic value to predict death in patients with gastric and colorectal cancer: A prospective study. J Parenter Enter Nutr., 2022; 46(3): 508–16.

37. SOUSA IM, et al. Low calf circumference adjusted for body mass index is associated with prolonged hospital stay. The American Journal of Clinical Nutrition, 2023; 117: 402–7.

38. SOUSA IM, et al. Low calf circumference is an independent predictor of mortality in cancer patients: a prospective cohort study. Nutrition, 2020; 79–80: 1–7.

39. SOUSA IM, et al. Prognostic Value of Isolated Sarcopenia or Malnutrition-Sarcopenia Syndrome for Clinical Outcomes in Hospitalized Patients. Nutrients, 2022; 14(11): 2207.

40. TSAI AC, CHANG T. The effectiveness of BMI, calf circumference and mid-arm circumference in predicting subsequent mortality risk in elderly Taiwanese, 2011; 275–81.

41. WEI J, et al. The association between low calf circumference and mortality: a systematic review and meta-analysis. Eur Geriatr Med., 2022; 13(3): 597–609.

42. WILDIERS H, et al. International society of geriatric oncology consensus on geriatric assessment in older patients with cancer. J Clin Oncol., 2014; 32(24): 2595–603.

43. WORLD HEALTH ORGANIZATION. WHO Expert Committee on Physical Status: The Use and Interpretation of Anthropometry. Geneva; 1995. Available at: https://www.who.int/publications/i/item/9241208546.

44. WORLD HEALTH ORGANIZATION. Guidance on person-centred assessment and pathways in primary care. Handbook. 2019;88. Available at: https://www.afro.who.int/publications/handbook-guidance-person-centred-assessment-and-pathways-primary-care..

45. YIN L, et al. Several anthropometric measurements and cancer mortality: predictor screening, threshold determination, and joint analysis in a multicenter cohort of 12138 adults. Eur J Clin Nutr., 2022; 76(5): 756–64.