Inteligência artificial no combate à sepse: apoiando o diagnóstico e tratamento clínico
##plugins.themes.bootstrap3.article.main##
Resumo
Objetivo: Analisar o funcionamento e a aplicação da inteligência artificial (IA) na medicina, com foco específico na abordagem da sepse, uma condição grave e de alta mortalidade. Revisão bibliográfica: A revisão evidenciou que a IA é uma ferramenta poderosa no apoio à tomada de decisões clínicas em casos de sepse. Por meio da análise de dados extraídos de prontuários eletrônicos, algoritmos treinados identificam precocemente sinais de septicemia, emitindo alertas que direcionam a equipe médica para intervenções mais rápidas e eficazes. Essa abordagem contribui para a redução da mortalidade e melhora o manejo clínico. Além disso, a IA auxilia no monitoramento contínuo do paciente e na personalização do tratamento, facilitando a estratificação de risco e a gestão clínica. Considerações finais: A pesquisa reforça a importância da inteligência artificial no avanço qualitativo da medicina. No entanto, destaca-se que a IA deve atuar como uma ferramenta complementar, mantendo o papel central e indispensável do médico no manejo da sepse.
##plugins.themes.bootstrap3.article.details##
Copyright © | Todos os direitos reservados.
A revista detém os direitos autorais exclusivos de publicação deste artigo nos termos da lei 9610/98.
Reprodução parcial
É livre o uso de partes do texto, figuras e questionário do artigo, sendo obrigatória a citação dos autores e revista.
Reprodução total
É expressamente proibida, devendo ser autorizada pela revista.
Referências
2. CALVERT J, et al. Using electronic health record collected clinical variables to predict medical intensive care unit mortality. Annals of Medicine and Surgery, 2016; 11: 52-57.
3. CHURPEK MM, et al. Multicenter Comparison of Machine Learning Methods and Conventional Regression for Predicting Clinical Deterioration on the Wards. Critical care med, 2016; 44(2): 368–374.
4. GINESTRA JC, et al. Clinician Perception of a Machine Learning–Based Early Warning System Designed to Predict Severe Sepsis and Septic Shock*. Critical Care Medicine, 2019; 47(11): 1477-1484.
5. HE J, et al. The practical implementation of artificial intelligence technologies in medicine. Nature Medicine, 2019; 25(1): 30-36.
6. JIANG F, et al. Artificial Intelligence in Healthcare: Past, Present and Future. Stroke and Vascular Neurology, 2017; 2(4): 230-243.
7. KRITTANAWONG C. The rise of artificial intelligence and the uncertain future for physicians. European journal of internal medicine, 2018; 48: e13–e14.
8. LI K, et al. Predicting in-hospital mortality in ICU patients with sepsis using gradient boosting decision tree. Medicine, 2021; 100(19): e25813–e25817.
9. LIAW SY, et al. Artificial Intelligence Versus Human-controlled Doctor in Virtual Reality Simulation for Sepsis Team Training: A Randomized Controlled Study. J of Med Internet Research, 2023; 25: e47748.
10. MAMANDIPOOR B, et al. Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation. BMC Medical Informatics and Decision Making, 2021; 21(1): 152-163.
11. MOHAMMED A, et al. Temporal Diff-erential Expression of Physiomarkers Predicts Sepsis in Critically Ill Adults. Shock, 2021; 56(1): 58–64.
12. NEMATI S, et al. An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU. Critical Care Medicine, 2018; 46(4): 547–553.
13. PAN X, et al. Evaluate prognostic accuracy of SOFA component score for mortality among adults with sepsis by machine learning method. BMC Infectious Diseases, 2023; 23(1): 76–83.
14. SHIMABUKURO DW, et al. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial. BMJ Open Respiratory Research, 2017; 4(1): e000234-e000241.
15. SONG X, et al. Clinical factors associated with rapid treatment of sepsis. PLOS ONE, 2021; 16(5): e0250923–e0250938.
16. TANEJA I, et al. Diagnostic and prognostic capabilities of a biomarker and EMR‐based machine learning algorithm for sepsis. Clinical and Translational Science, 2021; 14(4): 1578–1589.
17. TANSAKUL V, et al. Prediction of Sepsis and In-Hospital Mortality Using Electronic Health Records. Methods of Information in Medicine, 2018; 57(4): 185-193.
18. THE LANCET. Artificial intelligence in health care: within touching distance. The Lancet, 2017; 390(10114): 2739.
19. WANG D, et al. A Machine Learning Model for Accurate Prediction of Sepsis in ICU Patients. Frontiers in Public Health, 2021; 9(9): 754348–754355.
20. WARDI G, et al. Predicting Progression to Septic Shock in the Emergency Department Using an Externally Generalizable Machine-Learning Algorithm. Annals of Emergency Med, 2021; 77(4): 395–406.
21. WORLD HEALTH ORGANIZATION (WHO). Sepsis. 2024. Available from: https://www.who.int/news-room/fact-sheets/detail/sepsis. Acessado em: 26 de outubro de 2024.
22. YIN J, et al. Role of Artificial Intelligence Applications in Real-Life Clinical Practice: Systematic Review. Journal of Medical Internet Research, 2021; 23(4): e25759.
23. YUAN K-C, et al. The development an artificial intelligence algorithm for early sepsis diagnosis in the intensive care unit. Int J Med Inform, 2020; 141: 104176–104176.