Impacto do polimorfismo do citocromo P450 na farmacocinética dos opioides
##plugins.themes.bootstrap3.article.main##
Resumo
Objetivo: Avaliar o impacto dos polimorfismos dos genes codificadores das enzimas do citocromo P450 nos padrões farmacocinéticos dos opioides, além de investigar sua influência na ocorrência de reações adversas e desordens relacionadas ao uso dessa importante classe farmacológica. Métodos: Trata-se de uma revisão integrativa, as bases de dados utilizadas foram PubMed, Literatura Latino-Americana e do Caribe em Ciências da Saúde (Lilacs) e SciELO. Resultados: Um total de 300 artigos foram recuperados com base nas estratégias de busca, além de 2 artigos de fontes externas. Dentre os artigos analisados, 296 foram excluídos por não atenderem aos critérios de inclusão. Ao final da análise, 6 artigos foram selecionados. Os polimorfismos mais investigados envolveram os genes CYP3A4, CYP3A5, CYP2D6, CYP2B6 e CYP1A2. Considerações finais: Estudos de farmacogenética são essenciais, especialmente os que investigam os polimorfismos dos genes responsáveis pelas enzimas do complexo CYP450, pois ajudam a otimizar e individualizar os tratamentos farmacoterapêuticos com opioides. No entanto, ainda existem várias lacunas a serem exploradas nesse campo, reforçando a necessidade de novos estudos e do desenvolvimento de ferramentas que viabilizem a aplicação desses conhecimentos em larga escala na prática clínica.
##plugins.themes.bootstrap3.article.details##
Copyright © | Todos os direitos reservados.
A revista detém os direitos autorais exclusivos de publicação deste artigo nos termos da lei 9610/98.
Reprodução parcial
É livre o uso de partes do texto, figuras e questionário do artigo, sendo obrigatória a citação dos autores e revista.
Reprodução total
É expressamente proibida, devendo ser autorizada pela revista.
Referências
2. BADIN RC, et al. Pharmacological profile and potential drug interactions in ovarian cancer hospitalized patients.Journal of Oncology Pharmacy Practice, 2022; 29(5):1103-1111.
3. BAGLEY EE, INGRAM SL. Endogenous opioid peptides in the descending pain modulatory circuit. Neuropharmacology. 2020 Aug 15; 173:108131.
4. BALLESTER P, Muriel J, Peiró AM. CYP2D6 phenotypes and opioid metabolism: the path to personalized analgesia. Expert Opinion onDrugMetabolism&Toxicology. 2022 Apr;18(4):261-275.
5. CAMILLERI M, et al. Opioids in Gastroenterology: Treating Adverse Effects and Creating Therapeutic Benefits. Clinical Gastroenterology and Hepatology. 2017 Sep;15(9):1338-1349.
6. CASAJÚS A, et al. Impact of CYP2D6 and CYP2B6 phenotypes on the response to tramadol in patients with acute post-surgical pain. Clinicaland Translational Science. 2024 Jan;17(1):e13698.
7. CHAMBOKO CR, et al. Human Cytochrome P450 1, 2, 3 Families as Pharmacogenes with Emphases on Their Antimalarial and Antituberculosis Drugs and Prevalent African Alleles. International Journal of MolecularSciences, 2023; 24(4): 3383.
8. CORDER G, et al. Endogenous and Exogenous Opioids in Pain. Annual review of neuroscience, 2018 Jul 8;41:453-473.
9. CPIC. Diretriz CPIC® para codeína e CYP2D6, 2019. Disponível em: https://cpicpgx .org/guidelines /guideline-for-codeine-and-cyp2d6/. Acessado em: 20 de dezembro de 2024.
10. DE MORAES SS, et al. Interações medicamentosa mediadas pela CYP 450 em pacientes críticos: ênfase em antifúngicos triazólicos. Revista Eletrônica Acervo Saúde, 2023 23, 6 (jun. 2023), e13085.
11. ETTIENNE EB, et al. Pharmacogenomics and Opioid Use Disorder: Clinical Decision Support in an African American Cohort. JournaloftheNational Medical Association, 2019 Dec;111(6):674-681.
12. ESCH T, et al. Emerging regulatory roles of opioid peptides, endogenous morphine, and opioid receptor subtypes in immunomodulatory processes: Metabolic, behavioral, and evolutionary perspectives. Immunology letters,2020 Nov;227:28-33.
13. FITZCHARLES MA, et al. Nociplastic pain: towards an understanding of prevalent pain conditions. Lancet. 2021 May 29;397(10289):2098-2110.
14. FREIERMUTH CE, et al. Genetic Variants Associated With Opioid Use Disorder. Clinical Pharmacology Therapy. 2023 May;113(5):1089-1095.
15. FRIEDMAN A, NABONG L. Opioids: Pharmacology, Physiology, and Clinical Implications in Pain Medicine. Physical medicine andrehabilitationclinicsof North America,2020 May;31(2):289-303.
16. HIGGINBOTHAM JA, et al. Endogenous opioid systems alterations in pain and opioid use disorder. Frontiers in Systems Neuroscience, 2022 Oct 19;16:1014768.
17. IWERSEN-BERGMANN S, et al. Brain/blood ratios of methadone and ABCB1 polymorphisms in methadone-related deaths. InternationalJournalof Legal Medicine, 2021 Mar;135(2):473-482.
18. JAKOBSSON G, et al. Oxycodone findings and CYP2D6 function in postmortem cases. Forensic Science International Genetics, 2021 Jul;53:102510.
19. LOPES GS, et al. Sex Differences in Associations Between CYP2D6 Phenotypes and Response to Opioid Analgesics. Pharmgenomics and Personalized Medicine, 2020 Mar 13;13:71-79.
20. MEADEN CW, et al. A review of the existing literature on buprenorphine pharmacogenomics. PharmacogenomicsJournal, 2021 Apr;21(2):128-139.
21. NOFZIGER C, et al. PharmVarGeneFocus: CYP2D6. Clinical pharmacology and therapeutics, 2020 Jan;107(1):154-170.
22. PAUL B, et al. Opioid signaling and design of analgesics. Progress in Molecular Biology and Translational Science, 2023;195:153-176.
23. PATOCKA J, et al. Fentanyl and its derivatives: Pain-killers or man-killers? Heliyon, 2024 Mar 28;10(8):e28795.
24. PRINCIPI N, et al. Impact of Pharmacogenomics in Clinical Practice. Pharmaceuticals 2023, 16, 1596.
25. PRISMA. Transparent Reporting of Systematic Reviews and Meta-Analyses [Internet]. 2024. Disponível em: https://www.prisma-statement.org/. Acesso em: 01 de dezembro de 2024.
26. RODRIGUEZ-ANTONA C, et al. PharmVarGeneFocus: CYP3A5. Clinical pharmacology and therapeutics, 2022 Dec;112(6):1159-1171.
27. SAIZ-RODRÍGUEZ M, et al. Involvement of CYP2D6 and CYP2B6 on tramadol pharmacokinetics. Pharmacogenomics, 2020 Jul;21(10):663-675.
28. SAIZ-RODRÍGUEZ M, et al. Polymorphisms associated with fentanyl pharmacokinetics, pharmacodynamics and adverse effects. Basic &clinicalpharmacology&toxicology,2019 Mar;124(3):321-329.
29. SANTOS D, et al. O papel da farmacogenómica na terapia com opioides: otimização do controlo da dor e redução do risco de dependência e overdose. Acta Farmaceutica Portuguesa, 2023; 12(1), 125-134.
30. SONG Y, et al. Drug-Metabolizing Cytochrome P450 Enzymes Have Multifarious Influences on Treatment Outcomes. ClinicalPharmacokinetics. 2021 May;60(5):585-601.
31. STEIDL S, et al. Opioid-induced rewards, locomotion, and dopamine activation: A proposed model for control by mesopontine and rostromedial tegmental neurons. Neuroscience and biobehavioral reviews,2017 Dec;83:72-82.
32. TOUBIA T, KHALIFE T. The Endogenous Opioid System: Role and Dysfunction Caused by Opioid Therapy. Clinical ObstetricsandGynecology. 2019 Mar;62(1):3-10.
33. WANG D, SADEE W. CYP3A4 intronic SNP rs35599367 (CYP3A4*22) alters RNA splicing. PharmacogeneticsandGenomics. 2016 Jan;26(1):40-3.
34. WONG AK, et al. The Role of Pharmacogenomics in Opioid Prescribing. Currenttreatmentoptions in oncology,2022 Oct;23(10):1353-1369.HEI