Análise in sílico da quercetina como potencial fármaco hipoglicemiante para o tratamento do diabetes tipo 2

##plugins.themes.bootstrap3.article.main##

Marina Santos Queiroz Moura Fé
Ikaro Rodrigo Lima Nunes
Gabriel de Santana Araujo Silva
Ariami Iraci Sousa Moreira Lima da Costa
Andressa Santos Silva
Rômulo Dayan Camelo Salgado
Domingos Magno Santos Pereira

Resumo

Objetivo: Simular análises farmaco cinéticas e farmaco dinâmicas da quercetina, através de métodos in sílico e relatar seu efeito no combate a hiperglicemia, por meio de revisão de literatura. Métodos: Trata-se de um estudo misto, de natureza descritiva-exploratória e transversal. Os dados foram coletados nas plataformas Swiss ADME e Swiss Target Prediction, ambas disponíveis online e gratuitamente. Nelas foram realizadas análises farmacocinéticas, incluindo interação com enzimas do citocromo P450 e avaliadas as propriedades farmacodinâmicas, com a predição alvos biológicos, respectivamente. Utilizou-se as bases de dados Pubmed e Google Scholar para realização de uma pesquisa bibliográfica analítica sobre os potenciais terapêuticos da quercetina na Diabetes Mellitus tipo 2 (DM2).Resultados: Evidenciou-se boa biodisponibilidade por via oral, cumprindo os parâmetros da Regra de Lapinsk. Demostrou resultados promissores acerca dos parâmetros farmacocinéticos, entretanto apresentou efeito inibitório sobre as proteínas CYP1A2, CYPD6 e CYP3A4. Interagiu com cerca de 100 alvos-biológicos, sendo 33,3% do tipokinase, 6,7% liase,6,7% protease, 6,7% citocromo P450, 13,3% receptor acoplado a proteína G, 13,3% enzima e 20% oxido redutase. Conclusão: Concluiu-se a potencialidade da quercetina para o desenvolvimento de novos fármacos hipoglicemiantes. Entretanto, há maiores necessidades de estudos para avaliar sua terapêutica e a segurança de sua utilização.

##plugins.themes.bootstrap3.article.details##

Como Citar
FéM. S. Q. M., NunesI. R. L., SilvaG. de S. A., CostaA. I. S. M. L. da, SilvaA. S., SalgadoR. D. C., & PereiraD. M. S. (2025). Análise in sílico da quercetina como potencial fármaco hipoglicemiante para o tratamento do diabetes tipo 2. Revista Eletrônica Acervo Saúde, 25(5), e19965. https://doi.org/10.25248/reas.e19965.2025
Seção
Artigos Originais

Referências

1. ALKHALIDY H, et al. Kaempferola meliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obesity mice. J Nutr Biochem, 2018; 90-101.
2. ANKER JVD, et al. Developmental Changes in Pharmacokinetics and Pharmacodynamics. J Clin Pharmacol, 2018; S10-S25.
3. BHATTACHARYA S, et al. Caffeic acid, naringenin and quercetinenhance glucose-stimulated insulin secretion and glucose sensitivity in INS-1E cells. Diabetes Obes Metab, 2003; 602-612.
4. CAIA NARRA e DE FREITAS JCR. Avaliação das propriedades farmacocinéticas de um candidato a fármaco derivado da d-glicose. CONIMAS, 2019.
5. CHEN S, et al. Therapeutic Effects of Quercetin on Inflammation, Obesity, and Type 2 Diabetes. Inflammatory mediators, 2016; 1-5.
6. DARENSKAYA MA, et al. Oxidative stress: pathogenetic role in diabetes mellitus and its complications and therapeutic approaches to correction. Bulletin of experimental biology and medicine, 2021; 171(2): 179-189.
7. EID HM e HADDAD PS. The Antidiabetic Potential of Quercetin: Underlying Mechanisms. Current medicinal chemistry, 2017; 24(4): 355-364.
8. EL KHOURY G, et al. Prevalence, Correlates and Management of Hyperglycemia in Diabetic Non-critically Ill Patients at a Tertiary Care Center in Lebanon. Current diabetes reviews, 2019; 15(2): 133-140.
9. GRAF AB, et al. Rat Gastrointestinal Tissues Metabolize Quercetin. The Journal of Nutrition, 2006; 39-44.
10. GUPTA P, et al. Emerging role of protein kinases in diabetes mellitus: From mechanism to therapy. Advances in protein chemistry and structural biology, 2021; 124: 47-85.
11. GUYOMARD V, MYINT PK. Optimum control of blood glucose for prevention and treatment of ischemic and hemorrhagic stroke. Current treatment options in cardiovascular medicine, 2009; 11(3): 201-11.
12. HAWKINS BT e DAVIS TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacological reviews, 2005; 173-185.
13. LI Y, et al. Quercetin, Inflammation and Immunity. Nutrients, 2016; 8(3): 167.
14. LIN K, et al. An Interpretable Double-Scale Attention Model for Enzyme Protein Class Prediction Based on Transformer Encoders and Multi-Scale Convolutions. Frontiers in genetics, 2022; 1-20.
15. LUCAS V, et al. Bioactivity of dietary polyphenols: The role of metabolites. Critical Reviews in Food Science and Nutrition, 2019; 1-35.
16. MIRZAEI M. Ciência e engenharia in silico. Adv J Sci Eng, 2020; 1(1): 1-2.
17. MOHO SV, et al. Inhibitory effects of quercetin and its main methyl, sulfate, and glucuronic acid conjugates on cytochrome P450 enzymes, and on OATP, BCRP and MRP2 transporters. Nutrients, 2020; 12(8): 2306.
18. OHDY e OLEFSKY JM. G protein-coupled receptors as targets for antidiabetic therapeutics. Nature reviews Drug discovery, 2016; 15(3): 161-172.
19. OLTHOF MR, et al. Bioavailabilities of quercetin-3-glucoside and quercetin-4'-glucoside do not differ in humans. Human Nutrition and Metabolism—Research Communication, 2000; 1200-1203.
20. OTEIZA PI, et al. Flavonoids and the gastrointestinal tract: Local and systemic effects. Molecular Aspects of Medicine, 2018; 41-49.
21. PAN D, et al. The role of protein kinase C in diabetic microvascular complications. Frontiers in Endocrinology, 2022; 13: 973058.
22. PARDO MR, et al. Bioavailability of magnesium food supplements: A systematic review. Nutrition, 2021; 111294.
23. PATEL RV, et al. Therapeutic potential of quercetin as a cardiovascular agent. European Journal of Medicinal Chemistry, 2018; 889-904.
24. PATEL R, et al. Pharmaceutical Excipients and Drug Metabolism: A Mini-Review. Int J Mol Sci, 2020; 1-21.
25. POET TS e MCDOUGAL JN. Skin absorption and human risk assessment. Chem Biol Interact, 2002; 19–34.
26. RODRIGUES GS, et al. Uso de softwares livres em aula prática sobre filtros moleculares de biodisponibilidade oral de fármacos. Química Nova, 2021; 44: 1036-1044.
27. SERRA CA, et al. Quercetin prevents insulin dysfunction in hypertensive animals. J Diabetes Metab Disord., 2022, 408-417.
28. SIDHU JS, et al. Trends in small organic fluorescent scaffolds for detection of oxidoreductase. Biosens Bioelectron, 2021; 113441.
29. TSAO JP, et al. Short-Term Oral Quercetin Supplementation Improves Post-exercise Insulin Sensitivity, Antioxidant Capacity and Enhances Subsequent Cycling Time to Exhaustion in Healthy Adults: A Pilot Study. Front Nutr, 2022; 9: 1-5.
30. VAN DE WATERBEEMDH e GIFFORDE. ADMET in silico modelling: towards prediction paradise? Nat Rev Drug Discov., 2003; 2(3): 192-204.
31. WANG Y e MA H. Protein kinase profiling assays: a technology review. Drug Discov Today Technol, 2015; 1-8.
32. WEIS WI e KOBILKA BK. The Molecular Basis of G Protein–Coupled Receptor Activation. Annu Rev Biochem, 2018; 897-919.
33. XIE J, et al. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials, 2019; 1-20.