Fisiopatologia das arritmias cardíacas relacionadas à COVID-19
##plugins.themes.bootstrap3.article.main##
Resumo
Objetivos: Identificar na literatura científica a fisiopatologia associada ao desenvolvimento de arritmias em pacientes infectados pelo SARS-CoV-2. Métodos: Revisão integrativa da literatura, com artigos publicados entre 2019 a 2023, nos idiomas português, inglês e espanhol, com texto completo disponível. Utilizou-se como questão norteadora, elaborada conforme a estrutura PICo: “Quais evidências científicas esclarecem a fisiopatologia das arritmias cardíacas causadas pela infecção por SARS-CoV-2 em pacientes adultos?”. A pesquisa seguiu as diretrizes da metodologia Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) adaptada, feita em maio de 2024, sendo realizada buscas nas bases de dados: National Library of Medicine (PubMed) e Biblioteca Virtual em Saúde (BVS), por meio dos Descritores em Ciências da Saúde (DeCS): ”SARS-CoV-2”, “COVID-19”, “Arritmias Cardíacas”/”Arrhythmias, Cardiac”, integrados com o uso dos operadores booleanos “OR” e “AND”. A análise se deu de forma descritiva. Resultados: 11 artigos obedeceram aos critérios de inclusão e exclusão e compuseram a amostra final da pesquisa, em que se evidenciou aspectos biomoleculares associados ao desenvolvimento de arritmias na infecção por SARS-CoV-2. Considerações finais: Identificou-se que fatores inflamatórios e metabólicos favorecem o desenvolvimento de arritmias em pacientes infectados pelo SARS-CoV-2.
##plugins.themes.bootstrap3.article.details##
Copyright © | Todos os direitos reservados.
A revista detém os direitos autorais exclusivos de publicação deste artigo nos termos da lei 9610/98.
Reprodução parcial
É livre o uso de partes do texto, figuras e questionário do artigo, sendo obrigatória a citação dos autores e revista.
Reprodução total
É expressamente proibida, devendo ser autorizada pela revista.
Referências
2. BI X, et al. Mechanistic insights into inflammation-induced arrhythmias: a simulation study. Frontiers in Physiology, 2022; 13: 843292.
3. BULFAMANTE GP, et al. Evidence of SARS-CoV-2 transcriptional activity in cardiomyocytes of COVID-19 patients without clinical signs of cardiac involvement. Biomedicines, 2020; 8(12): 626.
4. CLEMENS DJ, et al. SARS-CoV-2 spike protein-mediated cardiomyocyte fusion may contribute to increased arrhythmic risk in COVID-19. Plos One, 2023; 18(3): 282151.
5. DENEGRI A, et al. Arrhythmias in COVID-19/SARS-CoV-2 pneumonia infection: prevalence and implication for outcomes. Journal of Clinical Medicine, 2022; 11(5): 1463.
6. DIMAI S, et al. COVID-19-associated cardiomyocyte dysfunction, arrhythmias and the effect of canakinumab. Plos One, 2021; 16(8): 255976.
7. HAN Y, et al. SARS-CoV-2 infection induces ferroptosis of sinoatrial node pacemaker cells. Circulation Research, 2022; 130(7): 963-977.
8. HIKMET F, et al. The protein expression profile of ACE2 in human tissues. Molecular Systems Biology, 2020; 16(7): 9610.
9. HUANG C, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020; 395(10223): 497–506.
10. KELESOGLU S, et al. New onset atrial fibrillation and risk factors in COVID-19. Journal of Electrocardiology, 2021; 65: 76–81.
11. KELESOGLU S, et al. Usefulness of C-reactive protein/albumin ratio as a predictor of new-onset atrial fibrillation in SARS-CoV-2. Biomarkers in Medicine, 2021; 15(13): 1167-1175.
12. LAZZERINI PE, et al. Cardioimmunology of arrhythmias: the role of autoimmune and inflammatory cardiac channelopathies. Nature Reviews Immunology, 2019; 19(1): 63-64.
13. LAZZERINI PE, et al. COVID-19, arrhythmic risk, and inflammation: mind the gap! Circulation, 2020; 142(1): 7-9.
14. LEI X, et al. Activation and evasion of type I interferon responses by SARS-CoV-2. Nature Communications, 2020; 11(1): 3810.
15. LINDNER D, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiology, 2020; 5(11): 1281-1285.
16. LIU PP, et al. The science underlying COVID-19: implications for the cardiovascular system. Circulation, 2020; 142(1): 68-78.
17. MARCHIANO S, et al. SARS-CoV-2 infects human pluripotent stem cell-derived cardiomyocytes, impairing electrical and mechanical function. Stem cell reports, 2021; 16(3): 478-492.
18. MEZACHE L, et al. Histologic, viral, and molecular correlates of heart disease in fatal COVID-19. Annals of Diagnostic Pathology, 2022; 60: 151983.
19. MONTEIL V, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell, 2020; 181(4): 905-9137.
20. MUSIKANTOW DR, et al. Atrial fibrillation in patients hospitalized with COVID-19: incidence, predictors, outcomes and comparison to influenza. Clinical Electrophysiology, 2021; 7(9): 1120-1130.
21. OXFORD. CENTRE FOR EVIDENCE-BASED MEDICINE. 2009. Levels of evidence [Internet]. Disponível em: http ://www.cebm.net/oxfordcentre-evidence-based-medicine-levels-evidencemarch-2009. Acessado em: 26 de maio de 2024.
22. PEREZ-BERMEJO JA, et al. SARS-CoV-2 infection of human iPSC-derived cardiac cells reflects cytopathic features in hearts of patients with COVID-19. Science Translational Medicine, 2021; 13(590): 7872.
23. SCHWARTZ PJ, et al. Inherited cardiac arrhythmias. Nature Reviews Disease Primers, 2020; 6(1): 58.
24. SHANG J, et al. Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2020; 117(21): 11727–11734.
25. SHARMA, A. et al. Human iPSC-derived cardiomyocytes are susceptible to SARS-CoV-2 infection. Cell Reports Medicine, 2020; 1(4): 100052.
26. SOUZA MT, et al. Integrative review: what is it? How to do it? Einstein (São Paulo). 2010; 8(1): 102-6
27. TORABIZADEH C, et al. Prevalence of cardiovascular complications in coronavirus disease 2019 adult patients: a systematic review and meta-analysis. Iranian Journal of Medical Sciences, 2023; 48(3): 243.
28. TURUGAM MK, et al. Malignant arrhythmias in patients with COVID-19: incidence, mechanisms, and outcomes. Circulation: Arrhythmia and Electrophysiology, 2020; 13(11): 8920.
29. URSI ES. Prevenção de lesões de pele no perioperatório: Revisão integrativa da literatura. Tese de Mestre (Mestrado em Enfermagem) - Escola de Enfermagem de Ribeirão Preto da Universidade de São Paulo, 2005; 48.
30. VARNEY, J. A. et al. COVID-19 and arrhythmia: An overview. Journal of cardiology, 2022; 79(4): 468-475.
31. WÖLFEL R, et al. Virological assessment of hospitalized patients with COVID-2019. Nature, 2020; 581(7809): 465-469.
32. WU L, et al. Atrial inflammation and microvascular thrombogenicity are increased in deceased COVID-19 patients. Cardiovascular Pathology, 2023; 64: 107524.
33. WU L, et al. Atrial inflammation in different atrial fibrillation subtypes and its relation with clinical risk factors. Clinical Research in Cardiology, 2020; 109: 1271-1281.
34. YE Q. The pathogenesis and treatment of the cytokine storm in COVID-19. Journal of Infection, 2020; 80(6): 607-613.
35. YU L, et. al. Cardiac arrhythmia in COVID‐19 patients. Annals of noninvasive electrocardiology, 2024; 29(2): 13105.
36. ZHANG H e DHALLA NS. The role of pro-inflammatory cytokines in the pathogenesis of cardiovascular disease. International journal of molecular sciences, 2024; 25(2): 1082.
37. ZYLLA MM, et al. Predictors and prognostic implications of cardiac arrhythmias in patients hospitalized for COVID-19. Journal of Clinical Medicine, 2021; 10(1): 133.