Relevância dos compostos heterocíclicos à química medicinal e saúde humana

##plugins.themes.bootstrap3.article.main##

Mayse Manuele Freitas Viana Leal
Diego Santa Clara Marques
Iranildo José da Cruz Filho
Wyndly Daniel Cardoso Gaião
Janilson José da Silva Júnior
Dijanah Cota Machado
Cláudio Gabriel Rodrigues
Maria do Carmo Alves de Lima

Resumo

Objetivo: Sintetizar evidências científicas visando apontar a relevância dos compostos heterocíclicos à química medicinal e saúde humana. Revisão Bibliográfica: Os compostos heterocíclicos são caracterizados pela presença de anel fechado contendo um ou mais átomos diferentes de carbono. Esses compostos têm ganhado significativa atenção devido à grande versatilidade de uso no contexto da saúde. Diversas biomoléculas naturais ou sintéticas são constituídas por anéis heterocíclicos, tais como a molécula de DNA, o ATP, antibióticos utilizados em infecções de importância clínica, a cafeína, anticoagulantes como a varfarina e diversos outros compostos capazes de curar ou melhorar a qualidade de vida dos seres humanos. O interesse da pesquisa relacionada a esses compostos está aumentando rapidamente, devido aos avanços em metodologias sintéticas e a sua versatilidade na interação com alvos biológicos. Na presente revisão, relata-se os recentes avanços de derivados heterocíclicos, como os derivados de piridina, tiofeno, pirrol, cumarinas, furano, quinolina e outros, no desenvolvimento de anti-inflamatórios, anticancerígenos, antibióticos, antifúngicos e outros. Considerações Finais: A pesquisa contínua relacionada à síntese de novas substâncias derivadas de compostos heterocíclicos é essencial para redução da morbi-mortalidade de diversas doenças que afligem a sociedade.

##plugins.themes.bootstrap3.article.details##

Como Citar
LealM. M. F. V., MarquesD. S. C., Cruz FilhoI. J. da, GaiãoW. D. C., Silva JúniorJ. J. da, MachadoD. C., RodriguesC. G., & LimaM. do C. A. de. (2025). Relevância dos compostos heterocíclicos à química medicinal e saúde humana. Revista Eletrônica Acervo Saúde, 25(5), e20249. https://doi.org/10.25248/reas.e20249.2025
Seção
Revisão Bibliográfica

Referências

1. ABDEL-AZIM MHM, et al. Ecofriendly synthesis of pyrano[2,3-d]pyrimidine derivatives and related heterocycles with anti-inflammatory activities. Arch Pharm (Weinheim). 2020; 353(9): e2000084.

2. AHMED EY, et al. VEGFR-2 inhibiting effect and molecular modeling of newly synthesized coumarin derivatives as anti-breast cancer agents. Bioorganic & Medicinal Chemistry. 2020; 28(5): 115328.

3. AL-MULLA A. A review: biological importance of heterocyclic compounds. Der Pharma Chemica, 2017; 9(13): 141-147.

4. AL-WARHI T, et al. Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorganic Chemistry. 2020; 103: 104163.

5. ALMUTAIRI FM, et al. Synthesis, Molecular Docking, c-Met Inhibitions of 2,2,2-Trichloroethylidene- cyclohexane-1, 3-dione Derivatives Together with their Application as Target SARS-CoV-2 main Protease (Mpro) and as Potential anti-COVID-19. Comb Chem High Throughput Screen. 2023; 26(7): 1437-1449.

6. ARASTEHFAR A, et al. Antifungal susceptibility, genotyping, resistance mechanism, and clinical profile of Candida tropicalis blood isolates. Med Mycol. 2020; 58(6): 766-773.

7. AUTI PB, BOTHARA KG. Diverse Heterocyclic Ring Systems: Innovative Advances in Medicinal Chemistry. Mini Rev Med Chem. 2021; 21(2): 134.

8. BANSAL, RK. Heterocyclic Chemistry. 5th ed. New Age International Publisher, 2014, 572p.

9. DE FARIA, R. et al. Perfil de resistência à antimicrobianos da classe dos Beta-lactâmicos e Aminoglicosídeos em cepas de Escherichia coli isoladas entre janeiro de 2015 e dezembro de 2018 / Antimicrobial resistance profile of the Beta-lactams and Aminoglycosides class in Escherichia coli strains isolated between january 2015 and december 2018. Braz. J. Develop. 2022; 8(7): 51673-91

10. DE S, et al. Pyridine: the scaffolds with significant clinical diversity. RSC Advances. 2022; 12(24): 15385–406.

11. EL-SHANBAKY H, et al. Synthesis of Heterocyclic and Non-heterocyclic Compounds Derived from Novel 2-Furanones and Evaluation of their Anti-viral Activity. Journal of Advanced Pharmacy Research, 2021; 5(1): 202-210.

12. FERREIRA MVC, et al. Penicilina: oitenta anos. Rev Med (São Paulo). 2008; 87(4): 272-6.

13. FRANCO DP, et al. A importância das cumarinas para a química medicinal e o desenvolvimento de compostos bioativos nos últimos anos. Quím Nova. 2021; 44(2): 180–97..

14. FUKUSHIMA AR, et al. Da química medicinal aos anticorpos monoclonais, como a bioinformática poderá revolucionar a indústria farmacêutica?. BWSJ. 2022; 5:1-7.

15. GABRIEL I. ‘Acridines’ as New Horizons in Antifungal Treatment. Molecules. 2020; 25(7): 1480.

16. JAMPILEK J. Heterocycles in Medicinal Chemistry. Molecules. 2019; 24(21): 3839.

17. JÓŹWIAK M, et al. Anticancer activities of fatty acids and their heterocyclic derivatives. Eur J Pharmacol. 2020; 871: 172937.0,

18. KABIR E, UZZAMAN M. A review on biological and medicinal impact of heterocyclic compounds. Results in Chemistry. 2022;4: 100606.

19. KAUSAR S, et al. A review: Mechanism of action of antiviral drugs. International Journal of Immunopathology and Pharmacology. 2021;35.

20. KIM S, et al. PubChem 2025 update. Nucleic Acids Res. 2025; 53(D1): D1516-D1525.

21. LING Y, et al. The Expanding Role of Pyridine and Dihydropyridine Scaffolds in Drug Design. Drug Des Devel Ther. 2021; 15: 4289-4338.

22. LIU H, et al. Synthesis, preliminary structure-activity relationships, and in vitro biological evaluation of 6-aryl-3-amino-thieno[2,3-b]pyridine derivatives as potential anti-inflammatory agents. Bioorg Med Chem Lett. 2013; 23(8): 2349-52.

23. MATHEW B. SAR Analysis of Various Heterocyclic Compounds in Medicinal Chemistry: Recent Updates-Part-I. Curr Top Med Chem. 2021; 21(30): 2694.

24. MELO MC, et al. Inhibition of the hemolytic activity caused by Staphylococcus aureus alpha-hemolysin through isatin-Schiff copper(II) complexes. FEMS microbiology letters. 2016; 363(1): fnv207.

25. MERMER A, et al. Recent studies of nitrogen containing heterocyclic compounds as novel antiviral agents: A review. Bioorg Chem. 2021;114: 105076.

26. MONTAGUT-ROMANS A, et al. Synthesis and Biological Evaluation of C-3 Aliphatic Coumarins as Vitamin K Antagonists. Bioorg. Med. Chem. Lett. 2017, 27 (7): 1598–1601.

27. MU JX, et al. Microwave assisted synthesis, antifungal activity, DFT and SAR study of 1,2,4-triazolo[4,3-a]pyridine derivatives containing hydrazone moieties. Chem Cent J. 2016; 10: 50.

28. MUSTAFA YF. Synthesis, characterization and antibacterial activity of novel heterocycle, coumacine, and two of its derivatives. Saudi Pharm J. 2018; 26(6): 870-875.

29. NASCIMENTO PH, et al. Preliminary evaluation of the interaction with Albumin/DNA and in vitro evaluation of the antioxidant properties promoted by thiosemicarbazones and thiazole compounds. Sci. Electronic Arch. 2024; 17(3).

30. PADMANABHAN P, et al. Antiviral activity of Thiosemicarbazones derived from α-amino acids against Dengue virus. J Med Virol. 2017; 89(3): 546-552.

31. PIBIRI I. Recent Advances: Heterocycles in Drugs and Drug Discovery. International Journal of Molecular Sciences. 2024; 25(17): 9503–3.

32. REISER O. Heterocyclic Chemistry – A Mature Area in Its Infancy! European Journal of Organic Chemistry. 2019; 019(31-32): 4973–5.

33. SAHU R, et al. Pyridine Moiety: Recent Advances in Cancer Treatment. Indian Journal of Pharmaceutical Sciences. 2022; 22(2): 248-272.

34. SELIEM IA, et al. New quinoline-triazole conjugates: Synthesis, and antiviral properties against SARS-CoV-2. Bioorganic Chemistry. 2021; 114: 105117.

35. SILVA AR. Síntese, caracterização e atividades biológicas de 1, 2, 4-oxadiazóis. Trabalho de Conclusão de Curso (Licenciatura em Química) - Departamento de Química, Universidade Federal Rural de Pernambuco, Recife, 2020.

36. SOUZA LG, et al. Coumarins as cholinesterase inhibitors: A review. Chemico-Biological Interactions. 2016;254: 11–23.

37. VILKOVÁ M, et al. Acridine Based N-Acylhydrazone Derivatives as Potential Anticancer Agents: Synthesis, Characterization and ctDNA/HSA Spectroscopic Binding Properties. Molecules. 2022; 27(9): 2883.

38. VITAKU E, et al. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J Med Chem. 2014; 57(24): 10257-74.

39. WEI L, et al. Synthesis, Characterization, and Antifungal Activity of Schiff Bases of Inulin Bearing Pyridine ring. Polymers (Basel). 2019; 11(2): 371.