Câncer cervical e polimorfismos no gene XRCC1

##plugins.themes.bootstrap3.article.main##

Andréia Michelle Alves Cunha de Alcântara
Ivan de Alcântara Barbosa Barros
Israel Santos da Silva
Karla Roberta Lemos Maul de Souza
Ivan Barbosa Barros
Maria de Mascena Diniz Maia
Paulo Roberto Eleutério de Souza

Resumo

Objetivo: Realizar uma revisão de literatura sobre o desenvolvimento do câncer cervical, enfatizando os dados epidemiológicos, a infecção pelo papilomavírus humano (HPV) na carcinogênese e o papel do gene XRCC1 no reparo do DNA, a fim de fornecer informações valiosas para a comunidade médica e científica. Revisão Bibliográfica: O câncer cervical é a quarta neoplasia maligna mais comum no mundo. Apesar dos fatores de risco ambientais, comportamentais e genéticos conhecidos, seu manejo ainda é inadequado. A infecção persistente por HPV oncogênico é um fator de risco bem estabelecido; no entanto, nem todos os indivíduos infectados desenvolvem câncer cervical, sugerindo a participação de mecanismos adicionais. Dentre esses, os polimorfismos no gene XRCC1 têm ganhado destaque. O XRCC1 codifica uma proteína estrutural essencial para a coordenação da reparação do DNA e regulação do ciclo celular. Três polimorfismos principais do XRCC1—Arg194Trp, Arg280His e Arg399Gln—estão associados à deficiência na reparação do DNA, instabilidade genômica e maior susceptibilidade ao câncer cervical. Considerações Finais: Um entendimento mais profundo dos mecanismos genéticos e celulares subjacentes ao câncer cervical pode facilitar o desenvolvimento de intervenções médicas direcionadas para as mulheres, contribuindo para a melhoria da qualidade de vida e redução da mortalidade.

##plugins.themes.bootstrap3.article.details##

Como Citar
AlcântaraA. M. A. C. de, BarrosI. de A. B., SilvaI. S. da, SouzaK. R. L. M. de, BarrosI. B., MaiaM. de M. D., & SouzaP. R. E. de. (2025). Câncer cervical e polimorfismos no gene XRCC1. Revista Eletrônica Acervo Saúde, 25(5), e20401. https://doi.org/10.25248/reas.e20401.2025
Seção
Revisão Bibliográfica

Referências

1. ACS. What is Cancer? 2024. Available at: https://www.cancer.org/cancer/understanding-cancer/what-is-cancer.html. Accessed on: February 1, 2025.
2. BROWN, R. et al. Mismatch Repair: Process and Pathways. Molecular Genetics Review, 2023; 42: e18-30.
3. CALDECOTT KW. XRCC1 protein; Form and function. DNA Repair (Amst.), 2003; 2(3): 283-289.
4. CALDECOTT KW, et al. Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. The EMBO Journal, 1996; 15(23): 6662–6670.
5. CHAUHAN A, et al. Genetic Variant Arg399Gln G>A of XRCC1 DNA Repair Gene Enhanced Cancer Risk Among Indian Population: Evidence from Meta-analysis and Trial Sequence Analyses. Revista Eletrônica AcervoCiência, 2018; 33(3): 262-272.
6. DAVIS, M. et al. Single-Strand Break Repair Mechanisms in Mammalian Cells. DNA Maintenance, 2022; 39: e50-63.
7. DEMIN AA, et al. XRCC1 prevents toxic PARP1 trapping during DNA base excision repair. Molecular Cell, 2021; 81(14): 3018-3030.
8. DUROCHER, D. et al. The FHA domain is a modular phosphopeptide recognition motif. Molecular Cell, 1999; 4(3): 387–394.
9. EXPASY VIRALZONE. 2024. Available at: https://viralzone.expasy.org/5. Accessed on: February 1, 2025.
10. GCO. GLOBAL CERVICAL CANCER ELIMINATION TOOL - Cervical Cancer Elimination Tool. 2020. Available at: https://www.who.int/cancer/cervical-cancer. Accessed on: February 1, 2025.
11. GENECARDS. 2024a. Available at XRCC1 Gene - GeneCards | XRCC1 Protein | XRCC1 Antibody. Accessed on: February 1, 2025.
12. GENECARDS. LIG3. 2024b. Available at: https://www.genecards.org/cgi-bin/carddisp.pl?gene=LIG3. Accessed on: February 1, 2025.
13. GUIDA F, et al. Global and regional estimates of orphans attributed to maternal cancer mortality in 2020. Nat Med, 2022; 28: e2563-2572.
14. HANSSEN-BAUER A, et al. X-ray repair cross complementing protein 1 in base excision repair. Int. J. Mol. Sci., 2012; 13(12): 17210-17229.
15. JOHNSON, P. et al. Nucleotide Excision Repair and Its Pathways. Genomic Integrity, 2024; 61: e76-85.
16. LEE, A. et al. Base Excision Repair Mechanisms and Uracil Containing DNA. DNA Repair Journal, 2023; 44: e98-105.
17. LIU W, et al. High turnover and rescue effect of XRCC1 in response to heavy charged particle radiation. Biophysical Journal, 2022; 8: e1493–1501.
18. LONDON RE. The structural basis of XRCC1-mediated DNA repair. DNA Repair (Amst.), 2015; 30: 90–103.
19. MA C and GURKAN-CAVUSOGLU E. A comprehensive review of computational cell cycle models in guiding cancer treatment strategies. npj Syst Biol Appl, 2024; 10: e71.
20. MOK MCY, et al., Identification of an XRCC1 DNA binding activity essential for retention at sites of DNA damage. Sci Rep 9, 3095 (2019).
21. MOSER J, et al. Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner. Molecular Cell. 2007;27(2):311–323.
22. NASH, H. et al. XRCC1 protein interacts with one of two distinct forms of DNA ligase III. Biochemistry, 1997; 36(17): 5207–5211.
23. NCI. NATIONAL CANCER INSTITUTE. HPV and Cancer. 2025. Available at: https://www.cancer.gov/about-cancer/causes-prevention/risk/infectious-agents/hpv-and-cancer Accessed on: February 1, 2025.
24. NCH. NATIONAL CANCER INSTITUTE. Cervical Cancer. 2023. Available at: https://www.cancer.gov/types/cervical. Accessed on: February 1, 2025.
25. NLM. NATIONAL LIBRARY OF MEDICINE. XRCC1 gene [Homo sapiens (human)]. 2024. Available at: https://www.ncbi.nlm.nih.gov/gene/7515. Accessed on: February 1, 2025.
26. NELSON CW and MIRABELLO L. Human papillomavirus genomics: Understanding carcinogenicity. Tumour Virus Res, 2023; 15: e200258.
27. OHASHI Y, et al. Insights into the regulation of human Rev1 for translesion synthesis: stoichiometry and complex formation with Y-family polymerases. Journal of Molecular Cell Biology, 2009; 5(3): 204–214.
28. REACTOME. Resolution of AP sites via the single-nucleotide replacement pathway 2025. Available from: https://reactome.org/PathwayBrowser/#/R-HSA-6781827. Accessed on: Feb. 6, 2025.
29. SMITH J, et al. Direct Reversal Repair and DNA Damage Fixation. Journal of DNA Repair, 2024; 52: e23-34.
30. SCIENCE NOTES. Cell Cycle Phases and Checkpoints. 2024. Available at: https://sciencenotes.org/cell-cycle-phases-and-checkpoints/. Accessed on: February 1, 2025.
31. TAMANG S. DNA Damage and DNA Repair: Types and Mechanism. Microbe Notes, Sept. 8, 2023. Available at: https://microbenotes.com/dna-damage-and-repair/. Accessed on: Feb. 6, 2025.
32. TAYLOR MR, et al. A cell cycle-specific requirement for the XRCC1 BRCT II domain during mammalian DNA strand break repair. J Biol Chem, 2000; 275(23): 17637-17644.
33. U.S. National Library of Medicine. Molecular Biology of the Cell: Structure and Function. Bethesda: National Center for Biotechnology Information (NCBI), 2021. Available at: https://www.ncbi.nlm.nih.gov/books/NBK568392/. Accessed on: 5 Feb. 2025.
34. VASIL’EVA IA, et al. Effect of human XRCC1 protein oxidation on the functional activity of its complexes with the key enzymes of DNA base excision repair. Biochemistry (Mosc). 2020; 85: 288–99.
35. WHITEHOUSE CJ, et al. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell, 2001; 104(1): 107-117.
36. WHO. Global strategy to accelerate the elimination of cervical cancer as a public health problem. 2024a. Available at: https://www.who.int/news-room/fact-sheets/detail/cervical-cancer. Accessed on: February 1, 2025.
37. WHO. World Health Organization. Human Papillomavirus and Cancer. 2024b. Available at: https://www.who.int/news-room/fact-sheets/detail/human-papilloma-virus-and-cancer. Accessed on: February 1, 2025.
38. WILSON G, et al. Double-Strand Break Repair and DNA Recombination. Journal of Molecular Biology, 2023; 68: 129-140.
39. YANG NN, et al. Meta-analysis of XRCC1 polymorphism and risk of female reproductive system cancer. Oncotarget, 2017; 8(17): 28455-28462.
40. ZHAO DY, et al., XRCC1 genetic polymorphism Arg339Gln, Arg194Trp, Arg280His and gastric cancer risk: an evidencebased decision. Cancer Biomark, 2014; 14:449–56.