Ausência de relação na susceptibilidade in vitro de promastigotas de Leishmania (Viannia) braziliensis e de Leishmania RNA virus 1 ao antimonial trivalente

##plugins.themes.bootstrap3.article.main##

Enmanuella Helga Ratier Terceiro de Medeiros
Cristiane Batista Mattos
Saara Neri Fialho
Ana Karoline da Cruz Silva
Claudino Limeira Souza
Carolina Bioni Garcia Teles
Lilian Motta Cantanhêde
Moreno Magalhães de Souza Rodrigues
Ricardo de Godoi Mattos Ferreira
Gabriel Eduardo Melim Ferreira

Resumo

Objetivo: Avaliar a relação entre a presença/carga viral do Leishmania RNA virus 1 (LRV1) e a susceptibilidade in vitro de promastigotas de Leishmania (Viannia) braziliensis ao antimônio trivalente (SbIII). Métodos: Estudo experimental analisando 20 cepas de L. (V.) braziliensis, 12 positivas para LRV1. A susceptibilidade ao SbIII foi avaliada por curvas de suavização e índice de atividade (IA). O LRV1 foi quantificado por PCR em tempo real (qPCR). Testes estatísticos foram aplicados para avaliar as associações e correlações entre os parâmetros analisados. Resultados: As cepas foram classificadas como suscetíveis (N=8) e menos suscetíveis (N=12) com base nas curvas de suavização em relação à cepa de referência. No IA, todas as cepas apresentaram menor susceptibilidade em comparação à referência. Das 12 cepas positivas para LRV1, 75% tiveram carga viral quantificada, enquanto 25% ficaram abaixo do limite de quantificação. As cepas LRV1 positivas exibiram maior densidade parasitária em relação as negativas. Conclusão: Embora as cepas LRV1 positivas apresentem maior densidade parasitária, não houve correlação significativa entre a presença/carga viral de LRV1 e a susceptibilidade in vitro ao SbIII.

##plugins.themes.bootstrap3.article.details##

Como Citar
MedeirosE. H. R. T. de, MattosC. B., FialhoS. N., SilvaA. K. da C., SouzaC. L., TelesC. B. G., CantanhêdeL. M., RodriguesM. M. de S., FerreiraR. de G. M., & FerreiraG. E. M. (2025). Ausência de relação na susceptibilidade in vitro de promastigotas de Leishmania (Viannia) braziliensis e de Leishmania RNA virus 1 ao antimonial trivalente. Revista Eletrônica Acervo Saúde, 25(5), e20534. https://doi.org/10.25248/reas.e20534.2025
Seção
Artigos Originais

Referências

1. ADAUI V, et al. Association of the endobiont double-stranded RNA virus LRV1 with treatment failure for human leishmaniasis caused by Leishmania braziliensis in Peru and Bolivia. The Journal of infectious diseases, 2016; 213(1): 112-121.

2. ALVAR J, et al. Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLoS ONE, 2012; 7(5): 35671.

3. ANDRADE JM, et al. Comparative transcriptomic analysis of antimony resistant and susceptible Leishmania infantum lines. Parasites & Vectors. 2020; 13(600): 1-15.

4. AREVALO J, et al. Influence of Leishmania (Viannia) species on the response to antimonial treatment in patients with American tegumentary leishmaniasis. The Journal of infectious diseases. 2007; 195(12): 1846-1851.

5. BACELLAR O, et al. Up-regulation of Th1-type responses in mucosal leishmaniasis patients. Infection and immunity, 2002; 70(12): 6734-6740.

6. BERBERT TSN, et al. Pentavalent antimonials combined with other therapeutic alternatives for the treatment of cutaneous and mucocutaneous leishmaniasis: A systematic review. Dermatology research and practice. 2018; 9014726.

7. BIYANI N, et al. Differential expression of proteins in antimony-susceptible and-resistant isolates of Leishmania donovani. Molecular and biochemical parasitology. 2011; 179(2): 91-99.

8. BOURREAU E, et al. Presence of Leishmania RNA virus 1 in Leishmania guyanensis increases the risk of first-line treatment failure and symptomatic relapse. The Journal of infectious diseases. 2016; 213(1): 105-111.

9. BRASIL, Ministério da Saúde. Leishmaniose Tegumentar Americana - Casos Confirmados Notificados No Sistema De Informação De Agravos De Notificação - Brasil. 2022. Available at: . Acessed on: November 22, 2024.

10. BROTHERTON MC, et al. Proteomic and Genomic Analyses of Antimony Resistant Leishmania infantum Mutant. PLoS ONE. 2013; 8(11): 81899.

11. BURZA S, et al. Leishmaniasis. The Lancet. 2018; 392(10151): 951-970.

12. CANTANHÊDE LM, et al. Further evidence of an association between the presence of Leishmania RNA virus 1 and the mucosal manifestations in tegumentary leishmaniasis patients. PLoS neglected tropical diseases, 2015; 9(9): 4079.

13. CANTANHÊDE LM, et al. New insights into the genetic diversity of Leishmania RNA Virus 1 and its species-specific relationship with Leishmania parasites. PLoS ONE. 2018; 13(6): 198727.

14. CARRION JR, et al. Leishmaniaviruses. Encyclopedia of Virology. 2008; 220–224.

15. CARVALHO RVH, et al. Leishmania RNA virus exacerbates Leishmaniasis by subverting innate immunity via TLR3-mediated NLRP3 inflammasome inhibition. Nat Commun. 2019; 10: 5273.

16. CASTELLUCCI LC, et al. Host genetic factors in American cutaneous leishmaniasis: a critical appraisal of studies conducted in an endemic area of Brazil. Memorias do Instituto Oswaldo Cruz. 2014; 109(3): 279-288.

17. CLEVELAND WS and DEVLIN SJ. Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American statistical association. 1988; 83(403): 596-610.

18. CROFT SL, et al. Drug resistance in leishmaniasis. Clinical microbiology reviews. 2006; 19(1): 111-126.

19. GUILBRIDE L, et al. Distribution and sequence divergence of LRV1 viruses among different Leishmania species. Molecular and Biochemical Parasitology. 1992; 54(1): 101–104.

20. HYDE R. Dose response curve analysis. University of Glasglow. 2018. Available at: https ://bitbucket.org/russ H/pog_codeclub/src/HEAD/challenges/codeclub_05_ic50.Rmd. Accessed on: April 10, 2020.

21. IVES A, et al. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science. 2011; 331(6018): 775-778.

22. LEPROHON P, et al. Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic acids research. 2009; 37(5): 1387-1399.

23. MATRANGOLO FSV, et al. Comparative proteomic analysis of antimony-resistant and-susceptible Leishmania braziliensis and Leishmania infantum chagasi lines. Molecular and biochemical parasitology. 2013; 190(2): 63-75.

24. MEIRA CS and GEDAMU L. Protective or Detrimental? Understanding the Role of Host Immunity in Leishmaniasis. Microorganisms. 2019; 7(12): 695.

25. MONCADA-DIAZ MJ, et al. Molecular Mechanisms of Drug Resistance in Leishmania spp. Pathogens. 2024; 13(10): 835.

26. MUKHERJEE A, et al. Role of ABC transporter MRPA, γ-glutamylcysteine synthetase and ornithine decarboxylase in natural antimony-resistant isolates of Leishmania donovani. Journal of Antimicrobial Chemotherapy. 2007; 59(2): 204-211.

27. PONTE-SUCRE A, et al. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS neglected tropical diseases. 2017; 11(12): 6052.

28. RAMASAWMY R, et al. The− 2518 bp promoter polymorphism at CCL2/MCP1 influences susceptibility to mucosal but not localized cutaneous leishmaniasis in Brazil. Infection, genetics and evolution, 2010; 10(5): 607-613.

29. REED GF, et al. Use of coefficient of variation in assessing variability of quantitative assays. Clinical and Vaccine Immunology. 2002; 9(6): 1235-1239.

30. ROJAS R, et al. Resistance to antimony and treatment failure in human Leishmania (Viannia) infection. The Journal of infectious diseases. 2006; 193(10): 1375-1383.

31. ROMERO GAS, et al. Comparison of Cutaneous Leishmaniasis due to Leishmania (Viannia) braziliensis and L. (V.) guyanensis in brazil: Therapeutic response to Meglumine Antimoniate. Am. J. Trop. Med. Hyg. 2001; 65: 456–465.

32. RUGANI JN, et al. Antimony resistance in Leishmania (Viannia) braziliensis clinical isolates from atypical lesions associates with increased ARM56/ARM58 transcripts and reduced drug uptake. Memórias do Instituto Oswaldo Cruz. 2019; 114: 190111.

33. SANTANA MCO, et al. Exploring Host-Specificity: Untangling the Relationship between Leishmania (Viannia) Species and Its Endosymbiont Leishmania RNA Virus 1. Microorganisms. 2023; 11(9): 2295.

34. SANTOS GA, et al. Systematic review of treatment failure and clinical relapses in leishmaniasis from a multifactorial perspective: Clinical aspects, factors associated with the parasite and host. Tropical Medicine and Infectious Disease. 2023; 8(9): 430.

35. SCHEFFTER SM, et al. The complete sequence of Leishmania RNA virus LRV2-1, a virus of an Old World parasite strain. Virology. 1995; 212: 84–90.

36. TARR PI, et al. LR1: a candidate RNA virus of Leishmania. Proceedings of the National Academy of Sciences of the United States of America. 1988; 85(24): 9572–5.

37. WHO. Leishmaniasis. Available at: https ://www.who.int/health-topics/leishmaniasis#tab=tab_1. Accessed on: July 15, 2024.

38. YARDLEY V, et al. American tegumentary leishmaniasis: is antimonial treatment outcome related to parasite drug susceptibility? The Journal of infectious diseases. 2006; 194(8): 1168- 1175.

39. ZANGGER H, et al. Leishmania aethiopica field isolates bearing an endosymbiontic dsRNA virus induce pro-inflammatory cytokine response. PLoS neglected tropical diseases. 2014; 8(4): 2836.

40. ZAULI-NASCIMENTO R, et al. In vitro sensitivity of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis Brazilian isolates to meglumine antimoniate and amphotericin B. Tropical Medicine & International Health. 2010; 15(1): 68-76.