Comparação entre alta e baixa fidelidade na aprendizagem das emergências cardiovasculares
##plugins.themes.bootstrap3.article.main##
Resumo
Objetivo: Comparar a eficácia da simulação de alta e baixa fidelidade no treinamento de emergências cardiovasculares. Métodos: Estudo experimental, realizado com 54 estudantes de medicina que foram distribuídos aleatoriamente em 9 grupos de 6 alunos cada. Esses grupos foram alocados ou no grupo “alta” ou “baixa” fidelidade, usando uma sequência de randomização com blocos permutados. A aprendizagem prática foi avaliada usando o mesmo caso clínico, e o desempenho da equipe foi avaliado por meio de uma lista de verificação de aprendizagem pré-validada composta por 38 itens, avaliados em uma escala Likert de 4 pontos. O teste Wilcoxon Mann-Whitney de amostra independente foi usado para comparar as diferenças médias na aquisição do desempenho prático. Um valor de p < 0,05 foi usado para determinar a significância deste estudo. Resultados: Os participantes de ambos os grupos obtiveram pontuações significativamente altas, independentemente da fidelidade do equipamento (grupo de baixa fidelidade: 3,83 ± 0,18; grupo de alta fidelidade: 3,63 ± 0,10; p = 0,14). Conclusão: Não houve diferença estatística significante nos resultados. Este estudo reforça que o uso de um projeto estruturado com uma base técnica discente e capacitação docente no método, têm o mesmo impacto no envolvimento, retenção e aprendizagem dos alunos.
##plugins.themes.bootstrap3.article.details##
Copyright © | Todos os direitos reservados.
A revista detém os direitos autorais exclusivos de publicação deste artigo nos termos da lei 9610/98.
Reprodução parcial
É livre o uso de partes do texto, figuras e questionário do artigo, sendo obrigatória a citação dos autores e revista.
Reprodução total
É expressamente proibida, devendo ser autorizada pela revista.
Referências
2. BRANDÃO CFS, et al. Recomendações para contenção de riscos biológicos para atividades de ensino baseado em simulação durante e após a pandemia pela Covid-19. Revista Eletrônica Acervo Saúde, 2022; 15(4): e10077.
3. BRANDÃO CFS, et al. Centros de Simulação e projeto pedagógico: dois lados da mesma moeda. Sci Med. 2018;28(1):ID28709.
4. CANNON-DIEBL MR. Simulation in healthcare and nursing state of the science. Critical Care Nursing Quarterly, 2009; 32(2): 128-136.
5. CHENG A, et al. Debriefing for technology-enhanced simulation: a systematic review and meta-analysis. Medical Education, 2014; 48(7): 657-666.
6. CHENG A, et al. The use of high-fidelity manikins for advanced life support training—a systematic review and meta- analysis. Resuscitation, 2015; 93: 142-9.
7. CHOW S, et al. Sample Size Calculations in Clinical Research. 2nd ed. Boca Raton, FL: Chapman and Hall/CRC, 2008.
8. COOK DA, et al. Technology-enhanced simulation for health professions education: a systematic review and meta-analysis. JAMA - Journal of the American Medical Association, 2011; 306(9): 978-988.
9. COOPER JB, TAQUETI VR. A brief history of the development of mannequin simulators for clinical education and training. Quality & Safety in Health Care, 2004; 13(Suppl 1): i11-i18.
10. DEERING S, ROWLAND J. Obstetric emergency simulation. Seminars in Perinatology, 2013; 37(3): 179-188.
11. FINAN E, et al. High-fidelity simulator technology may not be superior to traditional low-fidelity equipment for neonatal resuscitation training. Journal of Perinatology, 2012; 32(4): 287-92.
12. HESLOP L, et al. Undergraduate student nurses’ expectations and their self-reported preparedness for the graduate year role. J. Adv. Nurse, 2001; 36,626–634.
13. HOADLEY TA. Learning advanced cardiac life support: a comparison study of the effects of low- and high-fidelity simulation. Nursing Education Perspectives, 2009; 30(2): 91-95.
14. ILGEN JS, et al. Technology-enhanced simulation in emergency medicine: a systematic review and meta-analysis. Academic Emergency Medicine, 2013; 20(2): 117-127.
15. ISSENBERG SB, et al. Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review. Medical Teacher, 2005; 27(1): 10-28.
16. KARDONG-EDGREN S, et al. Does simulation fidelity improve student test scores? Clinical Simulation in Nursing, 2007; 3(1): e21-e24.
17. LO BM, et al. Comparison of traditional versus high-fidelity simulation in the retention of ACLS knowledge. Resuscitation, 2011; 82(11): 1440-1443.
18. MASSOTH C, et al. High-fidelity is not superior to low-fidelity simulation but leads to overconfidence in medical students. BMC Medical Education, 2019; 19(1):29.
19. MCFETRICH J, PRICE C. Simulators and scenarios: training nurses in emergency care. Medical Education, 2006; 40: 1139.
20. MCGAGHIE WC, et al. Effect of practice on standardised learning outcomes in simulation-based medical education. Medical Education, 2006; 40(8): 792-797.
21. MEANEY PA, et al. Rhythms and outcomes of adult in-hospital cardiac arrest. Critical Care Medicine, 2010; 38(1): 101-108.
22. MENDIS S (ed.), et al. Global Atlas on Cardiovascular Disease Prevention and Control. Geneva: World Health Organization, 2011.
23. MILLER RB. Psychological considerations in the design of training equipment. Ohio: Write Patterson Air Force Base; Write Air Development Center, 1954. (Report no. WADC-TR54-563, AD 71202).
24. NADKARNI VN, et al. First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults. JAMA - Journal of the American Medical Association, 2006; 295(1): 50-7.
25. NEILL MA, WOTTON K. High-fidelity simulation debriefing in nursing education: A literature review. Clinical Simulation in Nursing, 2011; 7(5): e161-e168.
26. NICHOL G, et al. Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA - Journal of the American Medical Association, 2008; 300(12): 1423-1431.
27. O’BRIEN G, et al. Interns' perceptions of performance and confidence in participating in and managing simulated and real cardiac arrest situations. Medical Teacher, 2001; 23(4): 389-395.
28. PEBERDY MA, et al. National Registry of Cardiopulmonary Resuscitation Investigators.Survival from in-hospital cardiac arrest during nights and weekends. JAMA - Journal of the American Medical Association, 2008; 299(7): 785-792.
29. PERSSON J. A review of the design and development processes of simulation for training in healthcare - A technology-centered versus a human-centered perspective. Applied ergonomics, 2017; 58: 314-326.
30. QURESHI Z, MAXWELL S. Has bedside teaching had its day? Advances in Health Sciences Education: theory and practice, 2012; 17(2): 301-304.
31. RODGERS DL, et al. The effect of high-fidelity simulation on educational outcomes in an Advanced Cardiovascular Life Support course. Simulation in Healthcare, 2009; 4(4): 200-206.
32. RUDOLPH JW, et al. Establishing a safe container for learning in simulation: the role of the presimulation briefing. Simulation in Healthcare, 2014; 9(6): 339-349.
33. SHARED S, et al. Interprofessional teamwork skills as predictors of clinical outcomes in simulated healthcare setting. Journal of Allied Health, 2013; 42(1): e1-e6.
34. SHERER Y, et al. A comparison of clinical simulation and case study presentation on nurse practitioner students’ knowledge and confidence in managing a cardiac event. International Journal of Nursing Education Scholarship, 2007; 4(1): 22.