Prevalência de Norovírus (Nov) em ambientes aquáticos

##plugins.themes.bootstrap3.article.main##

Rayssa de Lima Amoras
Laura Palheta de Andrade
Jean Lucas Duarte Mendonça
Maria Karoliny da Silva Torres

Resumo

Objetivo: Descrever a prevalência do norovírus em ambientes aquáticos. Métodos: Trata-se de uma revisão integrativa da literatura, com busca realizada nas bases de dados: PubMed, SciELO, Cochrane Library e ScienceDirect, abrangendo publicações entre 2015 à 2025. Foram incluídos artigos em inglês e espanhol que abordassem a relação entre norovírus e poluição hídrica, excluindo-se aqueles voltados exclusivamente a aspectos clínicos, métodos de detecção ou fora do recorte temporal. Resultados: Estudos indicam que os genogrupos GI e GII do norovírus, especialmente o subtipo GII.4, são os mais frequentemente detectados em alimentos de origem marinha (ostras, camarões e peixes) e em diferentes tipos de água (potável, rios, águas residuais e subterrâneas). A principal fonte de contaminação está relacionada ao lançamento de esgoto doméstico sem tratamento adequado no meio ambiente. A ocorrência do vírus é maior em estações frias e em regiões com infraestrutura sanitária precária. Considerações finais: O norovírus é um risco à saúde pública, com ampla presença em águas contaminadas e alimentos marinhos devido sua resistência ambiental e falta de monitoramento viral.

##plugins.themes.bootstrap3.article.details##

Como Citar
AmorasR. de L., AndradeL. P. de, MendonçaJ. L. D., & TorresM. K. da S. (2025). Prevalência de Norovírus (Nov) em ambientes aquáticos. Revista Eletrônica Acervo Saúde, 25(6), e20677. https://doi.org/10.25248/reas.e20677.2025
Seção
Revisão Bibliográfica

Referências

1. AMROABADI MA, et al. Incidence of hepatitis A and hepatitis E viruses and norovirus and rotavirus in fish and shrimp samples caught from the Persian Gulf. Arq Bras Med Vet Zootec, 2021; 73(1): 169–78.

2. BISWAS S, et al. Molecular screening of blue mussels indicated high mid-summer prevalence of human genogroup II Noroviruses, including the pandemic "GII.4 2012" variants in UK coastal waters during 2013. Braz. J. Microbiol, 2018; 49(2): 279–284.

3. CAMPILLAY-VÉLIZ CP, et al. Human Norovirus Proteins: Implications in the Replicative Cycle, Pathogenesis, and the Host Immune Response. Frontiers in immunology, 2020; 11: 961.

4. COSTA JND, et al. Epidemiological and molecular surveillance of norovirus in the Brazilian Amazon: description of recombinant genotypes and improvement of evolutionary analysis. Rev Inst Med trop S Paulo, 2024; (66): 22.

5. DEMETER K, et al. Modelling the interplay of future changes and wastewater management measures on the microbiological river water quality considering safe drinking water production. The Science of the Total Environment, 2021; 768: 144278.

6. FARKAS K, et al. Assessment of wastewater derived pollution using viral monitoring in two estuaries. Marine pollution bulletin, 2024; 200: 116081.

7. FARKAS K, et al. Seasonal and spatial dynamics of enteric viruses in wastewater and in riverine and estuarine receiving Waters. The Science of the Total Environment, 2018; 634: 1174-1183.

8. FLANNERY J, et al. Concentration of norovirus during wastewater treatment and its impact on oyster contamination. Appl Environ Microbiol, 2012; 78(9): 3400–6.

9. GAMAZO P, et al. Evaluation of Bacterial Contamination as an Indicator of Viral Contamination in a Sedimentary Aquifer in Uruguay. Food and Environmental Virology, 2018; 10(3): 305-315.

10. GLASS RI e PARASHAR UD, et al. Norovirus gastroenteritis. The New England journal of medicine, 2009; 361(18): 1776–1785.

11. HARDSTAFF JL, et al. Foodborne and food-handler norovirus outbreaks: a systematic review. Foodborne Pathog. 2018; 15(10): 589-597.

12. HARTARD C, et al. Relevance of F-Specific RNA Bacteriophages in Assessing Human Norovirus Risk in Shellfish and Environmental Waters. Applied and environmental microbiology, 2016; 82(18): 5709-19.

13. HENNECHART-COLLETTE C, et al. Method for detecting norovirus, hepatitis A and hepatitis E viruses in tap and bottled drinking water. International journal of food microbiology, 2022; 377: 109757.

14. JENNINGS WC, et al. CrAssphage for fecal source tracking in Chile: Covariation with norovirus, HF183, and bacterial indicators. Water research X, 2020; 9: 100071.

15. JURZIK L, et al. Chemical and microbiological parameters as possible indicators for human enteric viruses in surface water. International journal of hygiene and environmental health, 2010; 213(3): 210–216.

16. KHAMRIN P, et al. Genetic diversity of norovirus genogroup I, II, IV and sapovirus in environmental water in Thailand, Journal of infection and public health, 2020; 13(10): 1481-1489.

17. LANDRY F, et al. Acúmulo de vírus associados a sedimentos em moluscos Aplicação. Ambiente. Microbiol, 1983; 45: 238-247.

18. LEE JE, et al. Surveillance of Norovirus in Nationwide Groundwater Sources in South Korea: A Comprehensive Five-Year Study. Viruses, 2024; 16(12): 1814.

19. MALLA B, et al. Detection of Pathogenic Viruses, Pathogen Indicators, and Fecal-Source Markers within Tanker Water and Their Sources in the Kathmandu Valley, Nepal. Pathogens (Basel, Switzerland), 2019; 8(2): 81.

20. MAO M, et al. Spatial Distribution and Enrichment Dynamics of Foodborne Norovirus in Oyster Tissues. Foods, 2023; 13(1): 128.

21. MIAO J, et al. Total coliforms as an indicator of human enterovirus presence in surface water across Tianjin city, China. BMC Infect Dis, 2018; 18(1): 542.

22. MONTAZERI N, et al. Pathogenic Enteric Viruses and Microbial Indicators during Secondary Treatment of Municipal Wastewater, Appl Environ Microbiol, 2015; 81(18): 6436–6445.

23. MOORE MD e GOULTER RM, et al. Human norovirus as a Foodborne Pathogen: challenges and developments. Ann. Rev. Food. Sci. Technol, 2015; 6: 411-433.

24. NAGARAJAN V, et al. Prevalence, Distribution, and Genotypes of Adenovirus and Norovirus in the Puzi River and Its Tributaries and the Surrounding Areas in Taiwan. GeoHealth, 2021; 5(12): 2021GH000465.

25. OLIVARES AIO, et al. Epidemiology of enteric virus infections in children living in the Amazon region. Int J Infect Dis, 2021;108: 494-502.

26. OLIVEIRA J, et al. Microbial contamination and purification of bivalve shellfish: Crucial aspects in monitoring and future perspectives – A mini-review. Food Control, 2021; 22(6): 805-816.

27. PASALARI H, et al. Assessment of airborne enteric viruses emitted from wastewater treatment plant: Atmospheric dispersion model, quantitative microbial risk assessment, disease burden. Environmental pollution, 2019; 253: 464-473.

28. PURPARI G, et al. Molecular characterization of human enteric viruses in food, water samples, and surface swabs in Sicily. International journal of infectious diseases, 2019; 80: 66-72.

29. RAMIREZ-CASTILHO FY, et al. Waterborne Pathogens: Detection Methods and Challenges. Pathogens, 2015; 4(2): 307–334.

30. RUPNIK A, et al. The Impact of Winter Relocation and Depuration on Norovirus Concentrations in Pacific Oysters Harvested from a Commercial Production Site. Food and environmental virology, 2018; 10(3): 288-296.

31. SANO D, et al. Risk management of viral infectious diseases in wastewater reclamation and reuse: Review. Environment International, 2016; 91: 220-229.

32. SHANG X, et al. An outbreak of norovirus-associated acute gastroenteritis associated with contaminated barrelled water in many schools in Zhejiang, China. PloS on, 2017; 12(2): 171307.

33. SIQUEIRA JAM, et al. Environmental health of water bodies from a Brazilian Amazon Metropolis based on a conventional and metagenomic approach. Journal of Applied Microbiology, 2024; 135(5): 101.

34. SUN Y, et al. Research progress on biological accumulation, detection and inactivation technologies of norovirus in oysters. Foods, 2023; 12(21): 3891.

35. TANDUKAR S e SHERCHAN SP, et al. Applicability of crAssphage, pepper mild mottle virus, and tobacco mosaic virus as indicators of reduction of enteric viruses during wastewater treatment. Scientific reports, 2020; 10(1): 3616.

36. TUBATSI G e KEBAABETSWE LP. Detection of enteric viruses from wastewater and river water in Botswana. Food and Environmental Virology, 2022; 14(2): 157-169.

37. VIEIRA CB, et al. Viruses Surveillance Under Different Season Scenarios of the Negro River Basin, Amazonia, Brazil. Food Environ Virol, 2016; 8(1): 57-69.

38. WEN X, et al. Comparative Study of Two Methods of Enteric Virus Detection and Enteric Virus Relationship with Bacterial Indicator in Poyang Lake, Jiangxi, China. International journal of environmental research and public health, 2019; 16(18): 3384.

39. YEZILI S e OTTER JA. Minimum Infective Dose of the Major Human Respiratory and Enteric Viruses Transmitted Through Food and the Environmen. Food and environmental virology, 2011; 3(1): 1-30.

40. ZHENH D. et al. Norovirus classification and proposed strain nomenclature. Virology, 2006; 346(2): 312-323.